针对获取水声目标有类标样本困难且代价高昂的水声目标小样本识别问题,提出了基于混合正则化深度置信网络(hybrid regularization deep belief network,HR-DBN)的水声目标深度特征学习及识别方法。该方法首先提出了混合2种正则化策略的...针对获取水声目标有类标样本困难且代价高昂的水声目标小样本识别问题,提出了基于混合正则化深度置信网络(hybrid regularization deep belief network,HR-DBN)的水声目标深度特征学习及识别方法。该方法首先提出了混合2种正则化策略的深度置信网络进行水声目标深度特征学习。第一种正则化策略是利用最大互信息组正则化项修正目标函数,提高隐含层的稀疏度;第二种正则化策略是利用大量无类标样本获得有关水声目标的普遍特性的描述和先验知识,引导特征学习。最后利用少量有类标样本对网络进行全局优化,构建识别系统,提高水声目标识别正确率。利用2类实测舰船辐射噪声数据进行验证实验,实验结果表明,提出的方法可以提取描述水声目标的深度特征,提高水声目标识别正确率。展开更多
随着社会发展,海洋空间对人类变得愈发重要,对新的水下目标自动识别系统的需求也愈发迫切。在水下目标自动识别系统的构建过程中,提取到的特征含有很多冗余特征、不相关特征和噪声特征,影响系统工作效率,降低了分类识别正确率。为此,本...随着社会发展,海洋空间对人类变得愈发重要,对新的水下目标自动识别系统的需求也愈发迫切。在水下目标自动识别系统的构建过程中,提取到的特征含有很多冗余特征、不相关特征和噪声特征,影响系统工作效率,降低了分类识别正确率。为此,本文提出一种新的用于水下目标识别的特征选择算法——基于图学习的无监督特征选择算法(Unsupervised Feature Selection Algorithm Based on Graph Learning,UFSGL)。该算法通过同时进行转换矩阵优化和图学习来优化算法框架,并用正则化方法优化加权图中边的光滑度,最后对转换矩阵进行稀疏化从而进行特征选择。使用UCI数据库的sonar数据集对算法性能进行验证,结果证明,UFSGL算法能够有效减少特征子集中的特征个数,并在一定程度上提高分类识别正确率。展开更多
人体目标检测对社会治理和城市安全具有很重要的现实意义,监控数据是数据安全的重要来源。小目标检测是目前受到广泛关注的安全检测问题中一项具有挑战性的任务,其检测对象为大型图像中少于20个像素的目标。小目标的特征难以表征,其中...人体目标检测对社会治理和城市安全具有很重要的现实意义,监控数据是数据安全的重要来源。小目标检测是目前受到广泛关注的安全检测问题中一项具有挑战性的任务,其检测对象为大型图像中少于20个像素的目标。小目标的特征难以表征,其中一个主要挑战是,用于预训练/共同训练检测器的数据集(如COCO)与用于微调检测器的数据集(如TinyPerson)之间存在尺度不匹配的情况,这给小目标检测器的性能带来了负面影响。为了解决这个问题,文中提出了一种优化策略,用于匹配不同数据集的尺度,称其为尺度分布搜索(Scale Distribution Search,SDS),同时平衡图片的信息收益(数据集之间的尺度相近)和信息损失(信噪比(SNR)的降低)。该策略使用高斯模型对数据集中目标的尺度分布进行建模,通过迭代的方式寻找最优分布参数;并对比数据集中目标的特征分布和检测器的性能,以找到最佳的尺度分布。通过SDS策略,主流目标检测方法在TinyPerson上实现了更好的性能,证明了SDS策略在提升预训练/共同训练效率上的有效性。展开更多
文摘针对获取水声目标有类标样本困难且代价高昂的水声目标小样本识别问题,提出了基于混合正则化深度置信网络(hybrid regularization deep belief network,HR-DBN)的水声目标深度特征学习及识别方法。该方法首先提出了混合2种正则化策略的深度置信网络进行水声目标深度特征学习。第一种正则化策略是利用最大互信息组正则化项修正目标函数,提高隐含层的稀疏度;第二种正则化策略是利用大量无类标样本获得有关水声目标的普遍特性的描述和先验知识,引导特征学习。最后利用少量有类标样本对网络进行全局优化,构建识别系统,提高水声目标识别正确率。利用2类实测舰船辐射噪声数据进行验证实验,实验结果表明,提出的方法可以提取描述水声目标的深度特征,提高水声目标识别正确率。
文摘随着社会发展,海洋空间对人类变得愈发重要,对新的水下目标自动识别系统的需求也愈发迫切。在水下目标自动识别系统的构建过程中,提取到的特征含有很多冗余特征、不相关特征和噪声特征,影响系统工作效率,降低了分类识别正确率。为此,本文提出一种新的用于水下目标识别的特征选择算法——基于图学习的无监督特征选择算法(Unsupervised Feature Selection Algorithm Based on Graph Learning,UFSGL)。该算法通过同时进行转换矩阵优化和图学习来优化算法框架,并用正则化方法优化加权图中边的光滑度,最后对转换矩阵进行稀疏化从而进行特征选择。使用UCI数据库的sonar数据集对算法性能进行验证,结果证明,UFSGL算法能够有效减少特征子集中的特征个数,并在一定程度上提高分类识别正确率。
文摘人体目标检测对社会治理和城市安全具有很重要的现实意义,监控数据是数据安全的重要来源。小目标检测是目前受到广泛关注的安全检测问题中一项具有挑战性的任务,其检测对象为大型图像中少于20个像素的目标。小目标的特征难以表征,其中一个主要挑战是,用于预训练/共同训练检测器的数据集(如COCO)与用于微调检测器的数据集(如TinyPerson)之间存在尺度不匹配的情况,这给小目标检测器的性能带来了负面影响。为了解决这个问题,文中提出了一种优化策略,用于匹配不同数据集的尺度,称其为尺度分布搜索(Scale Distribution Search,SDS),同时平衡图片的信息收益(数据集之间的尺度相近)和信息损失(信噪比(SNR)的降低)。该策略使用高斯模型对数据集中目标的尺度分布进行建模,通过迭代的方式寻找最优分布参数;并对比数据集中目标的特征分布和检测器的性能,以找到最佳的尺度分布。通过SDS策略,主流目标检测方法在TinyPerson上实现了更好的性能,证明了SDS策略在提升预训练/共同训练效率上的有效性。