利用高光谱成像技术,明确苹果虫害无损检测的最优特征向量,以实现对苹果虫害的快速、准确、无损检测。本文首先对646 nm波长的特征图像进行阈值分割、膨胀与腐蚀运算获得掩膜图像,并利用掩模图像对高光谱图像进行掩模和主成分分析,对获...利用高光谱成像技术,明确苹果虫害无损检测的最优特征向量,以实现对苹果虫害的快速、准确、无损检测。本文首先对646 nm波长的特征图像进行阈值分割、膨胀与腐蚀运算获得掩膜图像,并利用掩模图像对高光谱图像进行掩模和主成分分析,对获得的PC1(the first principal component,第一主成分)图像进行最大熵阈值分割以有效提取虫害区域。然后对比分析虫害区域与正常区域图像的纹理特征,提取灰度共生矩阵的4个方向的4个纹理参数(能量、熵、惯性矩和相关性),并且采用基于高光谱图像的光谱差值获取了2个特征波长对应的光谱相对反射率作为光谱特征。优化组合纹理特征和光谱特征成4个特征向量组,采用BP(back propagation,反向传播)神经网络对正常苹果和虫害苹果进行检测。结果表明,融合0度方向的能量、熵、惯性矩和相关性的纹理特征和646、824 nm波段的相对光谱反射率的光谱特征进行检测识别效果最好,正常果的识别率为100%,虫害果的识别率为100%,并且速度快、误差小。该研究所获得的特征向量可为开发多光谱成像的苹果品质检测和分级系统提供参考。展开更多
利用图像处理和模式识别技术进行复杂背景下黄瓜叶部病害的自动识别,需要先把目标叶片从复杂背景中分割出来,才能进行后续的特征提取和病害识别。为实现复杂背景下黄瓜叶片的分割,首先利用K-均值聚类算法去除图片中的非绿色部分,再采用...利用图像处理和模式识别技术进行复杂背景下黄瓜叶部病害的自动识别,需要先把目标叶片从复杂背景中分割出来,才能进行后续的特征提取和病害识别。为实现复杂背景下黄瓜叶片的分割,首先利用K-均值聚类算法去除图片中的非绿色部分,再采用基于laplacian of gaussia(LOG)算子的方法对待分割的叶片进行区域检测,然后进行基于形状上下文(shape context)的模板匹配和分割。为了提高匹配速度,先检测叶片的生长点和叶尖,以确定叶片的位置、尺寸和方向;然后使用基于超像素(superpixel)的最优匹配搜索方法来减少搜索的复杂度。对20幅黄瓜叶部病害图像进行分割测试,并与人工分割法进行对比,结果表明,本文所采用的分割算法能较好地从复杂背景下提取出黄瓜叶部病害图像,分割准确率达94.7%,为后期黄瓜病斑的特征提取等工作奠定了良好的基础。展开更多
文摘利用高光谱成像技术,明确苹果虫害无损检测的最优特征向量,以实现对苹果虫害的快速、准确、无损检测。本文首先对646 nm波长的特征图像进行阈值分割、膨胀与腐蚀运算获得掩膜图像,并利用掩模图像对高光谱图像进行掩模和主成分分析,对获得的PC1(the first principal component,第一主成分)图像进行最大熵阈值分割以有效提取虫害区域。然后对比分析虫害区域与正常区域图像的纹理特征,提取灰度共生矩阵的4个方向的4个纹理参数(能量、熵、惯性矩和相关性),并且采用基于高光谱图像的光谱差值获取了2个特征波长对应的光谱相对反射率作为光谱特征。优化组合纹理特征和光谱特征成4个特征向量组,采用BP(back propagation,反向传播)神经网络对正常苹果和虫害苹果进行检测。结果表明,融合0度方向的能量、熵、惯性矩和相关性的纹理特征和646、824 nm波段的相对光谱反射率的光谱特征进行检测识别效果最好,正常果的识别率为100%,虫害果的识别率为100%,并且速度快、误差小。该研究所获得的特征向量可为开发多光谱成像的苹果品质检测和分级系统提供参考。
文摘利用图像处理和模式识别技术进行复杂背景下黄瓜叶部病害的自动识别,需要先把目标叶片从复杂背景中分割出来,才能进行后续的特征提取和病害识别。为实现复杂背景下黄瓜叶片的分割,首先利用K-均值聚类算法去除图片中的非绿色部分,再采用基于laplacian of gaussia(LOG)算子的方法对待分割的叶片进行区域检测,然后进行基于形状上下文(shape context)的模板匹配和分割。为了提高匹配速度,先检测叶片的生长点和叶尖,以确定叶片的位置、尺寸和方向;然后使用基于超像素(superpixel)的最优匹配搜索方法来减少搜索的复杂度。对20幅黄瓜叶部病害图像进行分割测试,并与人工分割法进行对比,结果表明,本文所采用的分割算法能较好地从复杂背景下提取出黄瓜叶部病害图像,分割准确率达94.7%,为后期黄瓜病斑的特征提取等工作奠定了良好的基础。