期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于知识图谱和图注意力的众包任务推荐算法
被引量:
3
1
作者
沈旭
王淑营
+1 位作者
田
媛
梦
郑庆
《计算机应用研究》
CSCD
北大核心
2023年第1期115-121,共7页
为解决目前众包任务推荐存在未考虑任务文本信息和数据稀疏的问题,提出一种基于知识图谱与图注意力的众包任务推荐模型。该模型首先利用自然语言处理技术提取任务文本信息中的关键要素,用于丰富图谱信息和缓解数据稀疏性;通过融合用户...
为解决目前众包任务推荐存在未考虑任务文本信息和数据稀疏的问题,提出一种基于知识图谱与图注意力的众包任务推荐模型。该模型首先利用自然语言处理技术提取任务文本信息中的关键要素,用于丰富图谱信息和缓解数据稀疏性;通过融合用户—任务交互图中的协同信息来构建协同知识图谱,在协同知识图谱中按协同邻居的类型分别运用图注意力网络;为获取用户准确的偏好,聚合邻居信息时按注意力得分从高到低采样固定数目的邻居;最后通过聚合不同类型的协同信息生成用户和任务的嵌入表示并得到交互概率。在构建的众包数据集上进行实验的结果表明,该模型在AUC、精准率、召回率和NDCG四个指标上均优于基线模型,验证了模型的可行性和有效性。
展开更多
关键词
众包任务推荐
知识图谱
自然语言处理
图注意力网络
下载PDF
职称材料
题名
基于知识图谱和图注意力的众包任务推荐算法
被引量:
3
1
作者
沈旭
王淑营
田
媛
梦
郑庆
机构
西南交通大学计算机与人工智能学院
西南交通大学机械工程学院
出处
《计算机应用研究》
CSCD
北大核心
2023年第1期115-121,共7页
基金
国家自然科学基金资助项目(52005420)。
文摘
为解决目前众包任务推荐存在未考虑任务文本信息和数据稀疏的问题,提出一种基于知识图谱与图注意力的众包任务推荐模型。该模型首先利用自然语言处理技术提取任务文本信息中的关键要素,用于丰富图谱信息和缓解数据稀疏性;通过融合用户—任务交互图中的协同信息来构建协同知识图谱,在协同知识图谱中按协同邻居的类型分别运用图注意力网络;为获取用户准确的偏好,聚合邻居信息时按注意力得分从高到低采样固定数目的邻居;最后通过聚合不同类型的协同信息生成用户和任务的嵌入表示并得到交互概率。在构建的众包数据集上进行实验的结果表明,该模型在AUC、精准率、召回率和NDCG四个指标上均优于基线模型,验证了模型的可行性和有效性。
关键词
众包任务推荐
知识图谱
自然语言处理
图注意力网络
Keywords
crowdsourcing task recommendation
knowledge graph
natural language processing
graph attention network
分类号
TP301.6 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于知识图谱和图注意力的众包任务推荐算法
沈旭
王淑营
田
媛
梦
郑庆
《计算机应用研究》
CSCD
北大核心
2023
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部