期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于双通道语义差网络的方面级别情感分类
1
作者
曾碧卿
徐马一
+4 位作者
杨健豪
裴枫华
甘子
邦
丁美荣
程良伦
《中文信息学报》
CSCD
北大核心
2022年第12期159-172,共14页
方面级别情感分类旨在分析一个句子中不同方面词的情感极性。先前的研究在文本表示上,难以产生依赖于特定方面词的上下文表示;在语义特征分析上,忽略了方面词的双侧文本在整体语义上与方面词情感极性之间具备不同关联度这一特征。针对...
方面级别情感分类旨在分析一个句子中不同方面词的情感极性。先前的研究在文本表示上,难以产生依赖于特定方面词的上下文表示;在语义特征分析上,忽略了方面词的双侧文本在整体语义上与方面词情感极性之间具备不同关联度这一特征。针对上述问题,该文设计了一种双通道交互架构,同时提出了语义差这一概念,并据此构建了双通道语义差网络。双通道语义差网络利用双通道架构捕捉相同文本中不同方面词的上下文特征信息,并通过语义提取网络对双通道中的文本进行语义特征提取,最后利用语义差注意力增强模型对重点信息的关注。该文在SemEval2014的Laptop和Restaurant数据集以及ACL的Twitter数据集上进行了实验,分类准确率分别达到了81.35%、86.34%和78.18%,整体性能超过了所对比的基线模型。
展开更多
关键词
自然语言处理
方面级别情感分析
双通道架构
语义差注意力
下载PDF
职称材料
题名
基于双通道语义差网络的方面级别情感分类
1
作者
曾碧卿
徐马一
杨健豪
裴枫华
甘子
邦
丁美荣
程良伦
机构
华南师范大学软件学院
广东省信息物理融合系统重点实验室
出处
《中文信息学报》
CSCD
北大核心
2022年第12期159-172,共14页
基金
国家自然科学基金(61876067)
广东省普通高校人工智能重点领域专项(2019KZDZX1033)
广东省信息物理融合系统重点实验室建设专项(2020B1212060069)。
文摘
方面级别情感分类旨在分析一个句子中不同方面词的情感极性。先前的研究在文本表示上,难以产生依赖于特定方面词的上下文表示;在语义特征分析上,忽略了方面词的双侧文本在整体语义上与方面词情感极性之间具备不同关联度这一特征。针对上述问题,该文设计了一种双通道交互架构,同时提出了语义差这一概念,并据此构建了双通道语义差网络。双通道语义差网络利用双通道架构捕捉相同文本中不同方面词的上下文特征信息,并通过语义提取网络对双通道中的文本进行语义特征提取,最后利用语义差注意力增强模型对重点信息的关注。该文在SemEval2014的Laptop和Restaurant数据集以及ACL的Twitter数据集上进行了实验,分类准确率分别达到了81.35%、86.34%和78.18%,整体性能超过了所对比的基线模型。
关键词
自然语言处理
方面级别情感分析
双通道架构
语义差注意力
Keywords
natural language processing
aspect-level sentiment classification
double channel architecture
semantic difference attention
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于双通道语义差网络的方面级别情感分类
曾碧卿
徐马一
杨健豪
裴枫华
甘子
邦
丁美荣
程良伦
《中文信息学报》
CSCD
北大核心
2022
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部