层状无机材料的弱层间耦合和大面积表面为构建低导热性无机固体材料提供了基本框架.合成具有足够散射和非谐波性的稳定层状材料,从而降低热导率,仍是一项挑战.本文在层状无机FeOCl材料体系中,通过一步氧化还原反应成功获得了一种结构稳...层状无机材料的弱层间耦合和大面积表面为构建低导热性无机固体材料提供了基本框架.合成具有足够散射和非谐波性的稳定层状材料,从而降低热导率,仍是一项挑战.本文在层状无机FeOCl材料体系中,通过一步氧化还原反应成功获得了一种结构稳定的富含Fe^(2+)的层状材料,实现了表面和界面的同步改性,并实现了超低的热导率.具体而言,系统的X射线吸收精细结构(XAFS)分析和电子能量损失光谱(EELS)分析表明,碱金属原子的层间插层和表面缺陷的引入诱导了大量Fe^(2+)的存在,从而增强了其非谐波性和声子散射.此外,声子态密度(PDOS)分布也提供了确凿的证据,证明了散射概率的提高和声子模式整体的软化.所制得的层状无机材料Fe(III)_(1−n)Fe(II)_(n)O_(1−x)Cl[K^(+)]_(m)不仅结构稳定,而且在298 K时的热导率比原始FeOCl降低了近60%,低至0.29 W m^(−1) K^(−1),这在层状无机材料中是极低的.这项研究为低导热层状材料的设计提供了新的视角.展开更多
Materials with low thermal conductivity are applied extensively in energy management,and breaking the amorphous limits of thermal conductivity to solids has attracted widespread attention from scientists.Doping is a c...Materials with low thermal conductivity are applied extensively in energy management,and breaking the amorphous limits of thermal conductivity to solids has attracted widespread attention from scientists.Doping is a common strategy for achieving low thermal conductivity that can offer abundant scattering centers in which heavier dopants always result in lower phonon group velocities and lower thermal conductivities.However,the amount of equivalent heavyatom single dopant available is limited.Unfortunately,nonequivalent heavy dopants have finite solubility because of charge imbalance.Here,we propose a charge balance strategy for SnS by substituting Sn2+with Ag^(+)and heavy Bi^(3+),improving the doping limit of Ag from 2%to 3%.Ag and Bi codoping increases the point defect concentration and introduces abundant boundaries simultaneously,scattering the phonons at both the atomic scale and nanoscale.The thermal conductivity of Ag0.03Bi0.03Sn0.94S decreased to 0.535 W·m^(−1)·K^(−1)at room temperature and 0.388 W·m^(−1)·K^(−1)at 275°C,which is below the amorphous limit of 0.450 W·m^(−1)·K^(−1)for SnS.This strategy offers a simple way to enhance the doping limit and achieve ultralow thermal conductivity in solids below the amorphous limit without precise structural modification.展开更多
基金supported by the Chinese Academy of Sciences(CAS)Project for Young Scientists in Basic Research(YSBR-070)the National Natural Science Foundation of China(21925110,22321001 and 12147105)+5 种基金the USTC Research Funds of the Double FirstClass Initiative(YD2060002004)the National Key Research and Development Program of China(2022YFA1203600)the Anhui Provincial Key Research and Development Project(202004a050200760)the Key R&D Program of Shandong Province(2021CXGC010302)the Fellowship of China Postdoctoral Science Foundation(2022M710141)the Open Foundation of the Key Lab(Center)of Engineering Research Center of Building Energy Efficiency Control and Evaluation,Ministry of Education(AHJZNX-2023-04).
文摘层状无机材料的弱层间耦合和大面积表面为构建低导热性无机固体材料提供了基本框架.合成具有足够散射和非谐波性的稳定层状材料,从而降低热导率,仍是一项挑战.本文在层状无机FeOCl材料体系中,通过一步氧化还原反应成功获得了一种结构稳定的富含Fe^(2+)的层状材料,实现了表面和界面的同步改性,并实现了超低的热导率.具体而言,系统的X射线吸收精细结构(XAFS)分析和电子能量损失光谱(EELS)分析表明,碱金属原子的层间插层和表面缺陷的引入诱导了大量Fe^(2+)的存在,从而增强了其非谐波性和声子散射.此外,声子态密度(PDOS)分布也提供了确凿的证据,证明了散射概率的提高和声子模式整体的软化.所制得的层状无机材料Fe(III)_(1−n)Fe(II)_(n)O_(1−x)Cl[K^(+)]_(m)不仅结构稳定,而且在298 K时的热导率比原始FeOCl降低了近60%,低至0.29 W m^(−1) K^(−1),这在层状无机材料中是极低的.这项研究为低导热层状材料的设计提供了新的视角.
基金supported by the CAS Project for Young Scientists in Basic Research(YSBR-070)the National Natural Science Foundation of China(21925110,21890750,U2032161,12147105)+8 种基金the USTC Research Funds of the Double First-Class Initiative(YD2060002004)the National Key Research and Development Program of China(2022YFA1203600,2022YFA1203601,2022YFA1203602)the Natural Science Foundation of China-Anhui Joint Fund(U23A20121)the Outstanding Youth Foundation of Anhui Province(2208085J14)the Anhui Provincial Key Research and Development Project(202004a050200760)the Key R&D Program of Shandong Province(2021CXGC010302)the Users with Excellence Project of Hefei Science Center CAS(2021HSC-UE004)the Fellowship of the China Postdoctoral Science Foundation(2022M710141)the open foundation of the Key Laboratory of the Engineering Research Center of Building Energy Efficiency Control and Evaluation,Ministry of Education(AHJZNX-2023-04).
文摘Materials with low thermal conductivity are applied extensively in energy management,and breaking the amorphous limits of thermal conductivity to solids has attracted widespread attention from scientists.Doping is a common strategy for achieving low thermal conductivity that can offer abundant scattering centers in which heavier dopants always result in lower phonon group velocities and lower thermal conductivities.However,the amount of equivalent heavyatom single dopant available is limited.Unfortunately,nonequivalent heavy dopants have finite solubility because of charge imbalance.Here,we propose a charge balance strategy for SnS by substituting Sn2+with Ag^(+)and heavy Bi^(3+),improving the doping limit of Ag from 2%to 3%.Ag and Bi codoping increases the point defect concentration and introduces abundant boundaries simultaneously,scattering the phonons at both the atomic scale and nanoscale.The thermal conductivity of Ag0.03Bi0.03Sn0.94S decreased to 0.535 W·m^(−1)·K^(−1)at room temperature and 0.388 W·m^(−1)·K^(−1)at 275°C,which is below the amorphous limit of 0.450 W·m^(−1)·K^(−1)for SnS.This strategy offers a simple way to enhance the doping limit and achieve ultralow thermal conductivity in solids below the amorphous limit without precise structural modification.