期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
辽宁省黄土状母质发育土壤有机质含量高光谱预测模型的构建 被引量:3
1
作者 杨雯 +3 位作者 玉川 徐鑫鹏 韩春兰 秋兵 《土壤通报》 CAS CSCD 北大核心 2022年第6期1320-1330,共11页
【目的】建立辽宁省黄土状母质发育土壤有机质含量的高光谱预测模型,以便快速获取土壤样品的有机质含量。【方法】对省域内黄土状母质发育土壤进行了样品采集,获取样品有机质含量和高光谱数据;选择原始光谱及其一阶微分、二阶微分、倒... 【目的】建立辽宁省黄土状母质发育土壤有机质含量的高光谱预测模型,以便快速获取土壤样品的有机质含量。【方法】对省域内黄土状母质发育土壤进行了样品采集,获取样品有机质含量和高光谱数据;选择原始光谱及其一阶微分、二阶微分、倒数对数、倒数对数一阶微分、倒数对数二阶微分6种光谱变换数据作为自变量,与土壤有机质含量进行相关分析,选取特征波段,分别建立多元逐步线性回归(SMLR)、偏最小二乘回归(PLSR)和主成分回归(PCR)3种土壤有机质高光谱线性预测模型,并进行了支持向量机(SVM)方法的非线性模型拟合。【结果】土壤有机质含量与其光谱反射率呈负相关关系,对光谱进行不同的数学变换,可以提高土壤有机质含量与光谱反射率的相关性,其中一阶微分和二阶微分的提升效果最佳;相同光谱数据在不同模型中建模精度存在显著差异,以原始光谱反射率一阶微分为自变量的PLSR模型精度最高,建模集和验证集的决定系数(R2)分别为0.958和0.976;3种线性方法建立的最佳预测模型的检验精度为:PLSR>SMLR>PCR。【结论】PLSR模型是辽宁省黄土状母质发育土壤有机质含量的最佳高光谱预测模型,且基于特征波段的建模效果优于全波段;SVM非线性模型的预测精度较低。 展开更多
关键词 土壤有机质 高光谱遥感 光谱变换 模型 黄土状母质
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部