由于微种群教与学优化算法的种群规模较小,故其种群多样性很难维持.为提高微种群教与学优化算法的搜索性能,提出了一种基于多源基因学习的微种群教与学优化算法(micro-population teaching-learning-based optimization based on multi-...由于微种群教与学优化算法的种群规模较小,故其种群多样性很难维持.为提高微种群教与学优化算法的搜索性能,提出了一种基于多源基因学习的微种群教与学优化算法(micro-population teaching-learning-based optimization based on multi-source gene learning,MTLBO-MGL).在MTLBO-MGL算法中,将教阶段和学阶段根据随机选择策略来对个体进行基因水平上的进化操作;并从基因层面上对种群多样性进行检测和使用稀疏谱聚类方法对种群的每个维度进行聚类.然后,根据多样性检测和聚类结果,选择不同的进化策略来提高所提算法的搜索性能.在28个测试函数上,通过将所提算法与其他4种微种群进化算法作对比,证明了所提算法的整体性能要显著好于所对比的4种算法.本文还将所提算法应用于无人机三维路径规划问题,结果表明MTLBO-MGL算法能够在该问题上取得较好结果.展开更多
为提高教与学优化算法的收敛速率且保证其可靠性,提出了一种基于反向学习的微种群教与学优化算法(opposition-based learning teaching-learning-based optimization algorithm with a micro population,OBL-μTLBO)。在所提算法中,利...为提高教与学优化算法的收敛速率且保证其可靠性,提出了一种基于反向学习的微种群教与学优化算法(opposition-based learning teaching-learning-based optimization algorithm with a micro population,OBL-μTLBO)。在所提算法中,利用小的种群规模(微种群)来提高教与学优化算法的收敛速率和降低对计算机内存的要求。同时,OBL-μTLBO算法使用反向学习所得“教师”来指引种群进化,以此提高算法的全局探索能力和避免其陷入局部最优。仿真结果表明,OBL-μTLBO算法不仅具有较好的寻优性能,而且还具有较快的收敛速度。最后,将OBL-μTLBO算法应用于求解非合作博弈纳什均衡问题,取得令人满意的结果。展开更多
文摘由于微种群教与学优化算法的种群规模较小,故其种群多样性很难维持.为提高微种群教与学优化算法的搜索性能,提出了一种基于多源基因学习的微种群教与学优化算法(micro-population teaching-learning-based optimization based on multi-source gene learning,MTLBO-MGL).在MTLBO-MGL算法中,将教阶段和学阶段根据随机选择策略来对个体进行基因水平上的进化操作;并从基因层面上对种群多样性进行检测和使用稀疏谱聚类方法对种群的每个维度进行聚类.然后,根据多样性检测和聚类结果,选择不同的进化策略来提高所提算法的搜索性能.在28个测试函数上,通过将所提算法与其他4种微种群进化算法作对比,证明了所提算法的整体性能要显著好于所对比的4种算法.本文还将所提算法应用于无人机三维路径规划问题,结果表明MTLBO-MGL算法能够在该问题上取得较好结果.
文摘为提高教与学优化算法的收敛速率且保证其可靠性,提出了一种基于反向学习的微种群教与学优化算法(opposition-based learning teaching-learning-based optimization algorithm with a micro population,OBL-μTLBO)。在所提算法中,利用小的种群规模(微种群)来提高教与学优化算法的收敛速率和降低对计算机内存的要求。同时,OBL-μTLBO算法使用反向学习所得“教师”来指引种群进化,以此提高算法的全局探索能力和避免其陷入局部最优。仿真结果表明,OBL-μTLBO算法不仅具有较好的寻优性能,而且还具有较快的收敛速度。最后,将OBL-μTLBO算法应用于求解非合作博弈纳什均衡问题,取得令人满意的结果。