期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种基于改进KH与KHM聚类的混合数据聚类算法 被引量:25
1
作者 王秋 丁成 王晓峰 《控制与决策》 EI CSCD 北大核心 2020年第10期2449-2458,共10页
为解决K-means聚类对初始聚类中心敏感和易陷入局部最优的问题,提出一种基于改进磷虾群算法与K-harmonic means的混合数据聚类算法.提出一种具有莱维飞行和交叉算子的磷虾群算法以改进磷虾群算法易陷入局部极值和搜索效率低的不足,即在... 为解决K-means聚类对初始聚类中心敏感和易陷入局部最优的问题,提出一种基于改进磷虾群算法与K-harmonic means的混合数据聚类算法.提出一种具有莱维飞行和交叉算子的磷虾群算法以改进磷虾群算法易陷入局部极值和搜索效率低的不足,即在每次标准磷虾群位置更新后加入新的位置更新方法进一步搜索以提高种群的搜索能力,同时交替使用莱维飞行与交叉算子对当前群体位置进行贪婪搜索以增强算法的全局搜索能力. 20个标准测试函数的实验结果表明,改进算法不易陷入局部最优解,可在较少的迭代次数下有效地搜索到全局最优解的同时保证算法的稳定性.将改进的磷虾群算法与K调和均值聚类融合,即在每次迭代后用最优个体或经过K调和均值迭代一次后的新个体替换最差个体. 5个UCI真实数据集的测试结果表明:融合后的聚类算法能够克服K-means对初始聚类中心敏感的不足且具有较强的全局收敛性. 展开更多
关键词 磷虾群算法 莱维飞行 交叉算子 K调和均值聚类 混合聚类
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部