灰狼优化(Grey Wolf Optimization,GWO)算法是一种新兴的群体智能优化算法,因简单高效而被成功应用于诸多领域。文章阐述了灰狼优化算法的搜索机制和实现过程,分析灰狼优化算法的特性,对目前GWO算法的相关改进及应用进行综述。重点对GW...灰狼优化(Grey Wolf Optimization,GWO)算法是一种新兴的群体智能优化算法,因简单高效而被成功应用于诸多领域。文章阐述了灰狼优化算法的搜索机制和实现过程,分析灰狼优化算法的特性,对目前GWO算法的相关改进及应用进行综述。重点对GWO算法的改进策略,包括种群初始化的改进、搜索机制的改进、参数的改进等进行了描述,对GWO算法在参数优化、复杂函数优化和组合优化等方面的应用进行了讨论。最后,对GWO算法的未来改进策略和实际应用进行了展望。展开更多
针对模糊C均值算法(fuzzy C-means algorithm,简称FCM)在入侵检测中需要预先指定聚类数的问题,提出了一种自动决定聚类数算法(fuzzy C-means and support vector machine algorithm,简称F-CMSVM).它首先用模糊C均值算法把目标数据集分...针对模糊C均值算法(fuzzy C-means algorithm,简称FCM)在入侵检测中需要预先指定聚类数的问题,提出了一种自动决定聚类数算法(fuzzy C-means and support vector machine algorithm,简称F-CMSVM).它首先用模糊C均值算法把目标数据集分为两类,然后使用带有模糊成员函数的支持向量机(support vector machihe,简称SVM)算法对结果进行评估以确定目标数据集是否可分,再迭代计算,最终得到聚类结果.支持向量机算法引入模糊C均值算法得出的隶属矩阵作为模糊成员函数,使得不同的输入样本可以得到不同的惩罚值,从而得到最优的分类超平面.该算法既不需要对训练数据集进行标记,也不需要指定聚类数,因此是一种真正的无监督算法.在对KDD CUP 1999数据集的仿真实验结果表明,该算法不仅能够得到最佳聚类数,而且对入侵有较好的检测效果.展开更多
文摘灰狼优化(Grey Wolf Optimization,GWO)算法是一种新兴的群体智能优化算法,因简单高效而被成功应用于诸多领域。文章阐述了灰狼优化算法的搜索机制和实现过程,分析灰狼优化算法的特性,对目前GWO算法的相关改进及应用进行综述。重点对GWO算法的改进策略,包括种群初始化的改进、搜索机制的改进、参数的改进等进行了描述,对GWO算法在参数优化、复杂函数优化和组合优化等方面的应用进行了讨论。最后,对GWO算法的未来改进策略和实际应用进行了展望。
文摘针对模糊C均值算法(fuzzy C-means algorithm,简称FCM)在入侵检测中需要预先指定聚类数的问题,提出了一种自动决定聚类数算法(fuzzy C-means and support vector machine algorithm,简称F-CMSVM).它首先用模糊C均值算法把目标数据集分为两类,然后使用带有模糊成员函数的支持向量机(support vector machihe,简称SVM)算法对结果进行评估以确定目标数据集是否可分,再迭代计算,最终得到聚类结果.支持向量机算法引入模糊C均值算法得出的隶属矩阵作为模糊成员函数,使得不同的输入样本可以得到不同的惩罚值,从而得到最优的分类超平面.该算法既不需要对训练数据集进行标记,也不需要指定聚类数,因此是一种真正的无监督算法.在对KDD CUP 1999数据集的仿真实验结果表明,该算法不仅能够得到最佳聚类数,而且对入侵有较好的检测效果.