车辆路径问题旨在求解每辆车的服务路线,使其在完成配送任务的情况下行驶距离之和最短,是运筹学中经典的组合优化问题,属于NP难问题,且具有较高的理论意义与实际应用价值。针对该问题,提出了一种基于分层学习和差分进化的混合粒子群优...车辆路径问题旨在求解每辆车的服务路线,使其在完成配送任务的情况下行驶距离之和最短,是运筹学中经典的组合优化问题,属于NP难问题,且具有较高的理论意义与实际应用价值。针对该问题,提出了一种基于分层学习和差分进化的混合粒子群优化算法(Hybrid Particle Swarm Optimization Algorithm Based on Hierarchical Learning and Different Evolution,DEHSLPSO)。DE-HSLPSO中引入了分层学习策略,以适应度值和迭代次数为依据将种群粒子动态划分为3层,在前两层粒子的进化过程中引入了社会学习机制,而第三层粒子进行差分进化,通过变异和交叉有效地增加粒子的多样性,从而开拓空间,有利于跳出局部最优。通过在经典的CVRP数据集上进行仿真实验,来探究DE-HSLPSO各部分对整体性能的影响,实验证明分层策略与差分进化均可提升算法的整体性能。另外,在7个基本算例上对DE-HSLPSO与其他优化算法进行了测试,综合时间与最优解进行对比,结果表明DE-HSLPSO的求解性能优于其他对比算法。展开更多
文摘车辆路径问题旨在求解每辆车的服务路线,使其在完成配送任务的情况下行驶距离之和最短,是运筹学中经典的组合优化问题,属于NP难问题,且具有较高的理论意义与实际应用价值。针对该问题,提出了一种基于分层学习和差分进化的混合粒子群优化算法(Hybrid Particle Swarm Optimization Algorithm Based on Hierarchical Learning and Different Evolution,DEHSLPSO)。DE-HSLPSO中引入了分层学习策略,以适应度值和迭代次数为依据将种群粒子动态划分为3层,在前两层粒子的进化过程中引入了社会学习机制,而第三层粒子进行差分进化,通过变异和交叉有效地增加粒子的多样性,从而开拓空间,有利于跳出局部最优。通过在经典的CVRP数据集上进行仿真实验,来探究DE-HSLPSO各部分对整体性能的影响,实验证明分层策略与差分进化均可提升算法的整体性能。另外,在7个基本算例上对DE-HSLPSO与其他优化算法进行了测试,综合时间与最优解进行对比,结果表明DE-HSLPSO的求解性能优于其他对比算法。