期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于文本挖掘的聚类算法研究
被引量:
7
1
作者
徐东亮
董开坤
+1 位作者
李斌
王
研
芬
《微计算机信息》
2011年第2期168-169,65,共3页
随着网络中数据信息的大量积累,如何从海量文本数据中有效提取所需要的信息成为当前文本挖掘的重要内容。本文主要研究K-means和K-medoids两种聚类算法在文本挖掘中的应用,并通过实验利用基于人工判定的指标对两类算法在聚类文档的准确...
随着网络中数据信息的大量积累,如何从海量文本数据中有效提取所需要的信息成为当前文本挖掘的重要内容。本文主要研究K-means和K-medoids两种聚类算法在文本挖掘中的应用,并通过实验利用基于人工判定的指标对两类算法在聚类文档的准确率和召回率方面进行了性能比较。实验结果表明,与K-means算法相比,K-medoids算法无论在准确率还是召回率方面都要高出5个百分点以上,且后者在处理异常数据和噪声数据方面更为鲁棒。
展开更多
关键词
文本挖掘
K-MEANS
K-medoids
准确率
召回率
下载PDF
职称材料
题名
基于文本挖掘的聚类算法研究
被引量:
7
1
作者
徐东亮
董开坤
李斌
王
研
芬
机构
哈尔滨工业大学(威海)网络与信息安全技术研究中心
出处
《微计算机信息》
2011年第2期168-169,65,共3页
文摘
随着网络中数据信息的大量积累,如何从海量文本数据中有效提取所需要的信息成为当前文本挖掘的重要内容。本文主要研究K-means和K-medoids两种聚类算法在文本挖掘中的应用,并通过实验利用基于人工判定的指标对两类算法在聚类文档的准确率和召回率方面进行了性能比较。实验结果表明,与K-means算法相比,K-medoids算法无论在准确率还是召回率方面都要高出5个百分点以上,且后者在处理异常数据和噪声数据方面更为鲁棒。
关键词
文本挖掘
K-MEANS
K-medoids
准确率
召回率
Keywords
text mining
K-means
K-medoids
precision rate
recall rate
分类号
TP301 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于文本挖掘的聚类算法研究
徐东亮
董开坤
李斌
王
研
芬
《微计算机信息》
2011
7
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部