提出了一种增量式极端随机森林分类器(incremental extremely random forest,简称IERF),用于处理数据流,特别是小样本数据流的在线学习问题.IERF算法中新到达的样本将被存储到相应的叶节点,并通过Gini系数来确定是否对当前叶节点进行分...提出了一种增量式极端随机森林分类器(incremental extremely random forest,简称IERF),用于处理数据流,特别是小样本数据流的在线学习问题.IERF算法中新到达的样本将被存储到相应的叶节点,并通过Gini系数来确定是否对当前叶节点进行分裂扩展,在给定有限数量,甚至是少量样本的情况下,IERF算法能够快速高效地完成分类器的增量构造.UCI数据集的实验证明,提出的IERF算法具有与离线批量学习的极端随机森林(extremely random forest,简称ERF)算法相当甚至更优的性能,在适度规模的样本集上,性能优于贪婪决策树重构算法和其他几种主要的增量学习算法.最后,提出的IERF算法被应用于解决视频在线跟踪(包含多目标跟踪)问题,基于多个真实视频数据的实验充分验证了算法的有效性和稳定性.展开更多
文摘提出了一种增量式极端随机森林分类器(incremental extremely random forest,简称IERF),用于处理数据流,特别是小样本数据流的在线学习问题.IERF算法中新到达的样本将被存储到相应的叶节点,并通过Gini系数来确定是否对当前叶节点进行分裂扩展,在给定有限数量,甚至是少量样本的情况下,IERF算法能够快速高效地完成分类器的增量构造.UCI数据集的实验证明,提出的IERF算法具有与离线批量学习的极端随机森林(extremely random forest,简称ERF)算法相当甚至更优的性能,在适度规模的样本集上,性能优于贪婪决策树重构算法和其他几种主要的增量学习算法.最后,提出的IERF算法被应用于解决视频在线跟踪(包含多目标跟踪)问题,基于多个真实视频数据的实验充分验证了算法的有效性和稳定性.