轻子散射实验是探索核子与原子核结构的理想工具。中国电子离子对撞机(Electron Ion Collider in China,EicC)建议书设想在已开建的强流重离子加速器装置(High Intensity heavy ion Accelerator Facility,HIAF)的基础上,升级质子束流为2...轻子散射实验是探索核子与原子核结构的理想工具。中国电子离子对撞机(Electron Ion Collider in China,EicC)建议书设想在已开建的强流重离子加速器装置(High Intensity heavy ion Accelerator Facility,HIAF)的基础上,升级质子束流为20 GeV的极化束流,并建造2.8~5 GeV极化电子束流,从而实现质心系能量为15~20 GeV的双极化电子-离子对撞。EicC设计的亮度为(2~4)×10^33cm^-2·s^-1,质子束流极化率达到70%,电子束流极化率达到80%。该装置除了能提供极化轻离子束流(例如:氦-3)外,也可产生非极化重离子束流(碳-12~铀-238)。EicC将聚焦核子海夸克部分子结构、原子核物质结构与性质、奇特强子态三个方面的物理研究。高亮度、高精度的对撞机有助于精确地测量核子结构函数并对核子进行三维成像,揭示强相互作用的动力学规律;原子核部分子分布包括核子短程关联以及原子核介质效应同样是该提案的重要科学目标;EicC能区接近重味夸克产生阈值,在研究重味强子谱方面拥有低背景的独特优势,有助于发现研究新的奇特强子态。质子质量起源问题也可以通过重味矢量介子的产生来研究。为了完成上述物理目标,我们将利用最先进的探测器技术建造接近全立体角覆盖的EicC对撞机谱仪。在准备EicC白皮书的过程中,我们得到世界各国专家的支持。EicC的物理与已有的实验和美国即将建设的EIC中的物理项目相互补充。EicC的建成及运行有望引领前沿的中高能核物理研究,使我国在加速器和探测器先进技术等领域实现跨越式发展,为我国核物理与强子物理以及相关科学领域提供大型综合实验平台与人才培养基地。展开更多
中子辐射俘获反应在反应堆运行、核装置设计及核天体物理研究中起重要的作用.4πBaF_(2)探测装置有着高时间分辨能力、低中子灵敏度、高探测效率等优点,适合开展中子辐射俘获反应截面数据的测量.中国原子能科学研究院核数据重点实验室...中子辐射俘获反应在反应堆运行、核装置设计及核天体物理研究中起重要的作用.4πBaF_(2)探测装置有着高时间分辨能力、低中子灵敏度、高探测效率等优点,适合开展中子辐射俘获反应截面数据的测量.中国原子能科学研究院核数据重点实验室建立了伽马全吸收装置(Gamma total absorption facility,GTAF),该装置用28块六棱BaF_(2)晶体和12块五棱BaF_(2)晶体构成了外径25 cm,内径10 cm的球壳,覆盖了95.2%的立体角.利用GTAF在中国散裂中子源Back-n束线上,测量了197Au(n,γ)的反应截面数据.测量数据通过能量筛选、PSD方法、晶体多重性筛选进行了初步本底扣除,随后结合对^(nat)C及空样品的测量数据对本底进行了分析及扣除,获得了197Au俘获反应的产额,利用SAMMY程序拟合得到了^(197)Au在1—100 e V的共振能量、中子共振宽度和伽马共振宽度参数.实验测量结果与ENDF/B-VIII.0数据库符合良好,其共振参数存在一定差异,分析原因可能与GTAF能量分辨率、Back-n的中子能谱测量精度、以及实验本底扣除方法相关,这也是下一步工作的重点.展开更多
In this paper,we examine the hypothesis that the nuclear EMC effect arises merely from the N-N SRC pairs inside the nucleus and that the properties of the N-N SRC pair are universal among the various nuclei,using the ...In this paper,we examine the hypothesis that the nuclear EMC effect arises merely from the N-N SRC pairs inside the nucleus and that the properties of the N-N SRC pair are universal among the various nuclei,using the conventional x-rescaling model for the EMC effect.With the previously determined effective mass of the short-range correlated nucleon and the number of N-N SRC pairs estimated,we calculated the EMC effect of various nuclei within the x-rescaling approach.According to our calculations,the nuclear EMC effect due to the mass deficits of the SRC nucleons is not sufficient to reproduce the observed EMC effect in experiments.We speculate that the internal structure of the mean-field single nucleon is also clearly modified.Alternatively,there can be more origins of the EMC effect beyond the N-N SRC configuration(such as theαcluster),or the universality of N-N SRC pair is significantly violated from light to heavy nuclei.展开更多
The^6 Li(n,t)~4 He reaction was measured as the first experiment involving neutron-induced charged particle emission reactions at the CSNS(China Spallation Neutron Source)Back-n white neutron source.The differential c...The^6 Li(n,t)~4 He reaction was measured as the first experiment involving neutron-induced charged particle emission reactions at the CSNS(China Spallation Neutron Source)Back-n white neutron source.The differential cross-sections of the^6 Li(n,t)~4 He reaction at 15 detection angles ranging from 19.2°to 160.8°are obtained from 1.0 eV to 3.0 MeV at 80 neutron energy points;for 50 energy points below 0.1 MeV they are reported for the first time.The results indicate that the anisotropy of the emitted tritium is noticeable above E_n=100 eV.The angle-integrated cross-sections are also obtained.The present differential cross-sections agree in general with the previous evaluations,but there are some differences in the details.More importantly,the present results indicate that the cross-sections of the^6 Li(n,t)~4 He reaction might be overestimated by most evaluations in the 0.5-3.0 MeV region,although they are recommended as standards below 1.0 MeV.展开更多
Plastic scintillation detectors for Time-of-Flight(TOF) measurements are almost essential for event-byevent identification of relativistic rare isotopes. In this work, a pair of plastic scintillation detectors of di...Plastic scintillation detectors for Time-of-Flight(TOF) measurements are almost essential for event-byevent identification of relativistic rare isotopes. In this work, a pair of plastic scintillation detectors of dimensions50×50×3^t mm^3and 80×100×3^t mm^3have been set up at the External Target Facility(ETF), Institute of Modern Physics(IMP). Their time, energy and position responses are measured with the^(18)O primary beam at 400 Me V/nucleon. After off-line corrections for walk effect and position, the time resolutions of the two detectors are determined to be 27 ps(σ) and 36 ps(σ), respectively. Both detectors have nearly the same energy resolution of3.1%(σ) and position resolution of about 3.4 mm(σ). The detectors have been used successfully in nuclear reaction cross section measurements, and will be be employed for upgrading the RIBLL2 beam line at IMP as well as for the high energy branch at HIAF.展开更多
The capture cross sections of the ^(169)Tm(n,γ)reaction were measured at the back streaming white neutron beam line(Back-n)of the China Spallation Neutron Source(CSNS)using four C_(6)D_(6) liquid scintillation detect...The capture cross sections of the ^(169)Tm(n,γ)reaction were measured at the back streaming white neutron beam line(Back-n)of the China Spallation Neutron Source(CSNS)using four C_(6)D_(6) liquid scintillation detectors.The background subtraction,normalization,and correction were carefully considered in the data analysis to obtain accurate cross sections.For the resonance at 3.9 eV,the R-matrix code SAMMY was used to determine the resonance parameters with the internal normalization method.The average capture cross sections of ^(169)Tm for energy between 30 and 300 keV were extracted relative to the ^(197)Au(n,γ)reaction.The measured cross sections of the ^(169)Tm(n,γ)reaction were reported in logarithmically equidistant energy bins with 20 bins per energy decade with a total uncertainty of 5.4%-7.0% in this study and described in terms of average resonance parameters using a Hauser-Feshbach calculation with fluctuations.The point-wise cross sections and the average resonance parameters showed fair agreement with the evaluated values of the ENDF/B-Ⅷ.0 library in the energy region studied.展开更多
文摘轻子散射实验是探索核子与原子核结构的理想工具。中国电子离子对撞机(Electron Ion Collider in China,EicC)建议书设想在已开建的强流重离子加速器装置(High Intensity heavy ion Accelerator Facility,HIAF)的基础上,升级质子束流为20 GeV的极化束流,并建造2.8~5 GeV极化电子束流,从而实现质心系能量为15~20 GeV的双极化电子-离子对撞。EicC设计的亮度为(2~4)×10^33cm^-2·s^-1,质子束流极化率达到70%,电子束流极化率达到80%。该装置除了能提供极化轻离子束流(例如:氦-3)外,也可产生非极化重离子束流(碳-12~铀-238)。EicC将聚焦核子海夸克部分子结构、原子核物质结构与性质、奇特强子态三个方面的物理研究。高亮度、高精度的对撞机有助于精确地测量核子结构函数并对核子进行三维成像,揭示强相互作用的动力学规律;原子核部分子分布包括核子短程关联以及原子核介质效应同样是该提案的重要科学目标;EicC能区接近重味夸克产生阈值,在研究重味强子谱方面拥有低背景的独特优势,有助于发现研究新的奇特强子态。质子质量起源问题也可以通过重味矢量介子的产生来研究。为了完成上述物理目标,我们将利用最先进的探测器技术建造接近全立体角覆盖的EicC对撞机谱仪。在准备EicC白皮书的过程中,我们得到世界各国专家的支持。EicC的物理与已有的实验和美国即将建设的EIC中的物理项目相互补充。EicC的建成及运行有望引领前沿的中高能核物理研究,使我国在加速器和探测器先进技术等领域实现跨越式发展,为我国核物理与强子物理以及相关科学领域提供大型综合实验平台与人才培养基地。
文摘中子辐射俘获反应在反应堆运行、核装置设计及核天体物理研究中起重要的作用.4πBaF_(2)探测装置有着高时间分辨能力、低中子灵敏度、高探测效率等优点,适合开展中子辐射俘获反应截面数据的测量.中国原子能科学研究院核数据重点实验室建立了伽马全吸收装置(Gamma total absorption facility,GTAF),该装置用28块六棱BaF_(2)晶体和12块五棱BaF_(2)晶体构成了外径25 cm,内径10 cm的球壳,覆盖了95.2%的立体角.利用GTAF在中国散裂中子源Back-n束线上,测量了197Au(n,γ)的反应截面数据.测量数据通过能量筛选、PSD方法、晶体多重性筛选进行了初步本底扣除,随后结合对^(nat)C及空样品的测量数据对本底进行了分析及扣除,获得了197Au俘获反应的产额,利用SAMMY程序拟合得到了^(197)Au在1—100 e V的共振能量、中子共振宽度和伽马共振宽度参数.实验测量结果与ENDF/B-VIII.0数据库符合良好,其共振参数存在一定差异,分析原因可能与GTAF能量分辨率、Back-n的中子能谱测量精度、以及实验本底扣除方法相关,这也是下一步工作的重点.
基金Supported by the National Natural Science Foundation of China(12005266)supported by the National Natural Science Foundation of China(12105128)+1 种基金supported by the National Natural Science Foundation of China(10175091,11305007)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB34030301)。
文摘In this paper,we examine the hypothesis that the nuclear EMC effect arises merely from the N-N SRC pairs inside the nucleus and that the properties of the N-N SRC pair are universal among the various nuclei,using the conventional x-rescaling model for the EMC effect.With the previously determined effective mass of the short-range correlated nucleon and the number of N-N SRC pairs estimated,we calculated the EMC effect of various nuclei within the x-rescaling approach.According to our calculations,the nuclear EMC effect due to the mass deficits of the SRC nucleons is not sufficient to reproduce the observed EMC effect in experiments.We speculate that the internal structure of the mean-field single nucleon is also clearly modified.Alternatively,there can be more origins of the EMC effect beyond the N-N SRC configuration(such as theαcluster),or the universality of N-N SRC pair is significantly violated from light to heavy nuclei.
基金Supported by National Key R&D Program of China(2016YFA0401604)National Natural Science Foundation of China(11775006)Science and Technology on Nuclear Data Laboratory and China Nuclear Data Center
文摘The^6 Li(n,t)~4 He reaction was measured as the first experiment involving neutron-induced charged particle emission reactions at the CSNS(China Spallation Neutron Source)Back-n white neutron source.The differential cross-sections of the^6 Li(n,t)~4 He reaction at 15 detection angles ranging from 19.2°to 160.8°are obtained from 1.0 eV to 3.0 MeV at 80 neutron energy points;for 50 energy points below 0.1 MeV they are reported for the first time.The results indicate that the anisotropy of the emitted tritium is noticeable above E_n=100 eV.The angle-integrated cross-sections are also obtained.The present differential cross-sections agree in general with the previous evaluations,but there are some differences in the details.More importantly,the present results indicate that the cross-sections of the^6 Li(n,t)~4 He reaction might be overestimated by most evaluations in the 0.5-3.0 MeV region,although they are recommended as standards below 1.0 MeV.
基金Supported by National Natural Science Foundation of China(11475014,11235002)National Key Research and Development Program(2016YFA0400500)
文摘Plastic scintillation detectors for Time-of-Flight(TOF) measurements are almost essential for event-byevent identification of relativistic rare isotopes. In this work, a pair of plastic scintillation detectors of dimensions50×50×3^t mm^3and 80×100×3^t mm^3have been set up at the External Target Facility(ETF), Institute of Modern Physics(IMP). Their time, energy and position responses are measured with the^(18)O primary beam at 400 Me V/nucleon. After off-line corrections for walk effect and position, the time resolutions of the two detectors are determined to be 27 ps(σ) and 36 ps(σ), respectively. Both detectors have nearly the same energy resolution of3.1%(σ) and position resolution of about 3.4 mm(σ). The detectors have been used successfully in nuclear reaction cross section measurements, and will be be employed for upgrading the RIBLL2 beam line at IMP as well as for the high energy branch at HIAF.
基金Supported by the National Natural Science Foundation of China(11790321,11805282)the National Key Research and Development Program of China(2016YFA0401601)。
文摘The capture cross sections of the ^(169)Tm(n,γ)reaction were measured at the back streaming white neutron beam line(Back-n)of the China Spallation Neutron Source(CSNS)using four C_(6)D_(6) liquid scintillation detectors.The background subtraction,normalization,and correction were carefully considered in the data analysis to obtain accurate cross sections.For the resonance at 3.9 eV,the R-matrix code SAMMY was used to determine the resonance parameters with the internal normalization method.The average capture cross sections of ^(169)Tm for energy between 30 and 300 keV were extracted relative to the ^(197)Au(n,γ)reaction.The measured cross sections of the ^(169)Tm(n,γ)reaction were reported in logarithmically equidistant energy bins with 20 bins per energy decade with a total uncertainty of 5.4%-7.0% in this study and described in terms of average resonance parameters using a Hauser-Feshbach calculation with fluctuations.The point-wise cross sections and the average resonance parameters showed fair agreement with the evaluated values of the ENDF/B-Ⅷ.0 library in the energy region studied.