Water and sediment transport from rivers to oceans is of primary importance in global geochemical cycle.Against the background of global change,this study examines the changes in water and sediment fluxes and their dr...Water and sediment transport from rivers to oceans is of primary importance in global geochemical cycle.Against the background of global change,this study examines the changes in water and sediment fluxes and their drivers for 4307 large rivers worldwide(basin area!1000 km2)based on the longest available records.Here we find that 24%of the world’s large rivers experienced significant changes in water flux and 40%in sediment flux,most notably declining trends in water and sediment fluxes in Asia’s large rivers and an increasing trend in suspended sediment concentrations in the Amazon River.In particular,nine binary patterns of changes in water-sediment fluxes are interpreted in terms of climate change and human impacts.The change of precipitation is found significantly correlated to the change of water flux in 71%of the world’s large rivers,while dam operation and irrigation rather control the change of sediment flux in intensively managed catchments.Globally,the annual water flux from rivers to sea of the recent years remained stable compared with the long-time average annual value,while the sediment flux has decreased by 20.8%.展开更多
基金supported by the National Natural Science Foundation of China (51721006 and 91647211)
文摘Water and sediment transport from rivers to oceans is of primary importance in global geochemical cycle.Against the background of global change,this study examines the changes in water and sediment fluxes and their drivers for 4307 large rivers worldwide(basin area!1000 km2)based on the longest available records.Here we find that 24%of the world’s large rivers experienced significant changes in water flux and 40%in sediment flux,most notably declining trends in water and sediment fluxes in Asia’s large rivers and an increasing trend in suspended sediment concentrations in the Amazon River.In particular,nine binary patterns of changes in water-sediment fluxes are interpreted in terms of climate change and human impacts.The change of precipitation is found significantly correlated to the change of water flux in 71%of the world’s large rivers,while dam operation and irrigation rather control the change of sediment flux in intensively managed catchments.Globally,the annual water flux from rivers to sea of the recent years remained stable compared with the long-time average annual value,while the sediment flux has decreased by 20.8%.