This paper studies existence of at least three positive doubly periodic solutions of a coupled nonlinear telegraph system with doubly periodic boundary conditions. First, by using the Green function and maximum princi...This paper studies existence of at least three positive doubly periodic solutions of a coupled nonlinear telegraph system with doubly periodic boundary conditions. First, by using the Green function and maximum principle, existence of solutions of a nonlinear telegraph system is equivalent to existence of fixed points of an operator. By imposing growth conditions on the nonlinearities, existence of at least three fixed points in cone is obtained by using the Leggett-Williams fixed point theorem to cones in ordered Banach spaces. In other words, there exist at least three positive doubly periodic solutions of nonlinear telegraph system.展开更多
文摘This paper studies existence of at least three positive doubly periodic solutions of a coupled nonlinear telegraph system with doubly periodic boundary conditions. First, by using the Green function and maximum principle, existence of solutions of a nonlinear telegraph system is equivalent to existence of fixed points of an operator. By imposing growth conditions on the nonlinearities, existence of at least three fixed points in cone is obtained by using the Leggett-Williams fixed point theorem to cones in ordered Banach spaces. In other words, there exist at least three positive doubly periodic solutions of nonlinear telegraph system.