针对变电一次设备状态监测中普遍存在的异常数据问题,提出了一种基于点排序识别聚类结构(Ordering Points to Identify the Clustering Structure,OPTICS)的状态监测异常数据过滤算法。通过对一次设备状态监测的历史数据进行异常数据特...针对变电一次设备状态监测中普遍存在的异常数据问题,提出了一种基于点排序识别聚类结构(Ordering Points to Identify the Clustering Structure,OPTICS)的状态监测异常数据过滤算法。通过对一次设备状态监测的历史数据进行异常数据特征分析,建立了基于密度聚类的异常数据过滤机制。并以某110 k V变电站一次设备变压器油色谱以及GIS SF6密度微水实验为例,对该算法的异常数据检测效果进行了验证。该算法与传统异常数据过滤算法的对比试验结果表明,该算法能够准确地识别异常数据的特征,有效过滤状态监测中的异常数据,显著降低噪声干扰,从而提高数据的可靠性。展开更多
目的:利用深度学习方法自动抽取中文生物医学文本中的开放式概念关系,以增强生物医学文本理解及医学知识网络构建。方法:使用BiLSTM-CRF模型从中文生物医学文献数据中抽取以句子上下文短语描述的开放式概念关系,并与基于条件随机场(Cond...目的:利用深度学习方法自动抽取中文生物医学文本中的开放式概念关系,以增强生物医学文本理解及医学知识网络构建。方法:使用BiLSTM-CRF模型从中文生物医学文献数据中抽取以句子上下文短语描述的开放式概念关系,并与基于条件随机场(Conditional Random Fields,CRF)和基于长短时记忆网络(Long Short-Term Memory,LSTM)的方法进行对比分析。结果:基于BiLSTM-CRF的中文生物医学开放式概念关系抽取方法取得F1值为0.5221,显著高于基于CRF模型的方法(F1值为0.2353)和基于LSTM模型的方法(F1值为0.3355)。结论:与单独使用CRF模型或LSTM模型的方法相比,基于BiLSTM-CRF的开放式概念关系抽取方法具有更好的鲁棒性和泛化性,对于生物医学文本理解、医学知识网络构建等研究具有借鉴意义。展开更多
文摘针对变电一次设备状态监测中普遍存在的异常数据问题,提出了一种基于点排序识别聚类结构(Ordering Points to Identify the Clustering Structure,OPTICS)的状态监测异常数据过滤算法。通过对一次设备状态监测的历史数据进行异常数据特征分析,建立了基于密度聚类的异常数据过滤机制。并以某110 k V变电站一次设备变压器油色谱以及GIS SF6密度微水实验为例,对该算法的异常数据检测效果进行了验证。该算法与传统异常数据过滤算法的对比试验结果表明,该算法能够准确地识别异常数据的特征,有效过滤状态监测中的异常数据,显著降低噪声干扰,从而提高数据的可靠性。
文摘目的:利用深度学习方法自动抽取中文生物医学文本中的开放式概念关系,以增强生物医学文本理解及医学知识网络构建。方法:使用BiLSTM-CRF模型从中文生物医学文献数据中抽取以句子上下文短语描述的开放式概念关系,并与基于条件随机场(Conditional Random Fields,CRF)和基于长短时记忆网络(Long Short-Term Memory,LSTM)的方法进行对比分析。结果:基于BiLSTM-CRF的中文生物医学开放式概念关系抽取方法取得F1值为0.5221,显著高于基于CRF模型的方法(F1值为0.2353)和基于LSTM模型的方法(F1值为0.3355)。结论:与单独使用CRF模型或LSTM模型的方法相比,基于BiLSTM-CRF的开放式概念关系抽取方法具有更好的鲁棒性和泛化性,对于生物医学文本理解、医学知识网络构建等研究具有借鉴意义。