为了利用深度学习实现对输电线路的多目标识别以及多种故障的检测,以Faster RCNN(faster regions with convolutional neural networks features)网络为算法框架进行无人机图像的数据挖掘,针对输电线路的6种目标检测任务,提出了3种改进...为了利用深度学习实现对输电线路的多目标识别以及多种故障的检测,以Faster RCNN(faster regions with convolutional neural networks features)网络为算法框架进行无人机图像的数据挖掘,针对输电线路的6种目标检测任务,提出了3种改进策略,分别为自适应图像预处理算法,基于面积的非极大值抑制算法,以及切分检测方案。研究结果表明:所提改进算法能够利用挖掘的数据对故障进行准确定位与识别,实现对复杂背景下航拍图像中多目标的故障检测,也可类推至其他类似多目标应用场景。论文研究可为多目标的检测和识别提供参考。展开更多
文摘为了利用深度学习实现对输电线路的多目标识别以及多种故障的检测,以Faster RCNN(faster regions with convolutional neural networks features)网络为算法框架进行无人机图像的数据挖掘,针对输电线路的6种目标检测任务,提出了3种改进策略,分别为自适应图像预处理算法,基于面积的非极大值抑制算法,以及切分检测方案。研究结果表明:所提改进算法能够利用挖掘的数据对故障进行准确定位与识别,实现对复杂背景下航拍图像中多目标的故障检测,也可类推至其他类似多目标应用场景。论文研究可为多目标的检测和识别提供参考。