Phytochrome has fascinated plant scientists since its discovery in 1959-1960 by the Beltsville research group of the United States Department of Agriculture. Studies in the first 20 years had evidenced that phytochrom...Phytochrome has fascinated plant scientists since its discovery in 1959-1960 by the Beltsville research group of the United States Department of Agriculture. Studies in the first 20 years had evidenced that phytochrome acts as an universal regulator in plant life adapting its behavior to the environmental light, and developed widely the physiological understanding of phytochrome action. In the following 20 years, some thirty world_wide major laboratories have published over two hundred papers a year on various aspects of the subject, and they are making steady progress. The authors’ work has also contributed to the following aspects: coaction of phytochrome and phytohormone in photomorphogenesis, phytochrome purification, phytochrome regulation of male fertility, as well as phytochrome A gene analysis and expression in photoperiod sensitive genic male sterile rice. In the recent decade significant advances have been made in studies on phytochrome molecules, genes and signal transduction in phytochrome response. This is largely due to the advances in molecular genetics, where experiments using mutants and transgenic plants, particularly in Arabidopsis, that have led to the significant insights at the molecular level. The topics in this review include:(1) Discovery of phytochrome; (2) Functions of phytochrome; (3) Phytochrome molecules; (4) Phytochrome regulation in gene expression.展开更多
The cDNA fragment encoding caffeic acid 3_O_methyltransferase (COMT) in Chinese white poplar ( Populus tomentosa Carr.) was isolated and cloned by RT_PCR technique. The size of the cDNA fragment is 1 080 bp, which alm...The cDNA fragment encoding caffeic acid 3_O_methyltransferase (COMT) in Chinese white poplar ( Populus tomentosa Carr.) was isolated and cloned by RT_PCR technique. The size of the cDNA fragment is 1 080 bp, which almost covers the whole cDNA_encoding region. Authors’ cDNA fragment in P. tomentosa shares 98.7% homology with the reported corresponding cDNA in the P. tremuloids at nucleotide level, 99.4% homology at amino acid level, respectively. The analysis of Northern dot hybridization showed that COMT is expressed specifically in the developing secondary xylem of stem during the season of xylem differentiation, which means the linkage between the gene expression for a monolignol biosynthetic enzyme and seasonal regulation of xylem development in woody plant.展开更多
咖啡酰辅酶A-0-甲基转移酶(CCoAOMT)是木质素生物合成途径中的关键酶.从水稻(Oryzasativa L ssp japonica)中分离了CCoAOMT基因家族的3个成员OsCOAl,OsCOA20和OsCOA26.序列分析表明,OsCOAl基因由4个外显子和3个内含子组成,OsCOA20和OsCO...咖啡酰辅酶A-0-甲基转移酶(CCoAOMT)是木质素生物合成途径中的关键酶.从水稻(Oryzasativa L ssp japonica)中分离了CCoAOMT基因家族的3个成员OsCOAl,OsCOA20和OsCOA26.序列分析表明,OsCOAl基因由4个外显子和3个内含子组成,OsCOA20和OsCOA26则具有3个外显子和2个内含子.这3个基因与其他植物同类CCoAOMT氨基酸同源性较高,达75.43%,并具有CCoAOMT基因特有的保守序列元件.系统进化树分析表明,OsCOAl与玉米中CCoAOMT具有较近的亲源关系,OsCOA20和OsCOA26则属于另一分支.Northern 印迹和组织原位杂交结果显示,3个基因的mRNA在水稻的各组织均有积累,在幼叶的厚壁组织和维管束大量表达,说明该基因家族的3个成员与水稻的木质化进程关系密切.展开更多
文摘Phytochrome has fascinated plant scientists since its discovery in 1959-1960 by the Beltsville research group of the United States Department of Agriculture. Studies in the first 20 years had evidenced that phytochrome acts as an universal regulator in plant life adapting its behavior to the environmental light, and developed widely the physiological understanding of phytochrome action. In the following 20 years, some thirty world_wide major laboratories have published over two hundred papers a year on various aspects of the subject, and they are making steady progress. The authors’ work has also contributed to the following aspects: coaction of phytochrome and phytohormone in photomorphogenesis, phytochrome purification, phytochrome regulation of male fertility, as well as phytochrome A gene analysis and expression in photoperiod sensitive genic male sterile rice. In the recent decade significant advances have been made in studies on phytochrome molecules, genes and signal transduction in phytochrome response. This is largely due to the advances in molecular genetics, where experiments using mutants and transgenic plants, particularly in Arabidopsis, that have led to the significant insights at the molecular level. The topics in this review include:(1) Discovery of phytochrome; (2) Functions of phytochrome; (3) Phytochrome molecules; (4) Phytochrome regulation in gene expression.
文摘The cDNA fragment encoding caffeic acid 3_O_methyltransferase (COMT) in Chinese white poplar ( Populus tomentosa Carr.) was isolated and cloned by RT_PCR technique. The size of the cDNA fragment is 1 080 bp, which almost covers the whole cDNA_encoding region. Authors’ cDNA fragment in P. tomentosa shares 98.7% homology with the reported corresponding cDNA in the P. tremuloids at nucleotide level, 99.4% homology at amino acid level, respectively. The analysis of Northern dot hybridization showed that COMT is expressed specifically in the developing secondary xylem of stem during the season of xylem differentiation, which means the linkage between the gene expression for a monolignol biosynthetic enzyme and seasonal regulation of xylem development in woody plant.
文摘咖啡酰辅酶A-0-甲基转移酶(CCoAOMT)是木质素生物合成途径中的关键酶.从水稻(Oryzasativa L ssp japonica)中分离了CCoAOMT基因家族的3个成员OsCOAl,OsCOA20和OsCOA26.序列分析表明,OsCOAl基因由4个外显子和3个内含子组成,OsCOA20和OsCOA26则具有3个外显子和2个内含子.这3个基因与其他植物同类CCoAOMT氨基酸同源性较高,达75.43%,并具有CCoAOMT基因特有的保守序列元件.系统进化树分析表明,OsCOAl与玉米中CCoAOMT具有较近的亲源关系,OsCOA20和OsCOA26则属于另一分支.Northern 印迹和组织原位杂交结果显示,3个基因的mRNA在水稻的各组织均有积累,在幼叶的厚壁组织和维管束大量表达,说明该基因家族的3个成员与水稻的木质化进程关系密切.