研究了CO_2浓度倍增对大豆(Glycine max L.,C_3植物)、黄瓜(Cucumis sativus L.,C_3植物)、谷子(Setaria italica (L.) Beauv.,一种不很典型的C_4植物)和玉米(Zea mays L.,C_4植物)叶片的叶绿素蛋白质复合物的影响。实验植物盆栽于聚乙...研究了CO_2浓度倍增对大豆(Glycine max L.,C_3植物)、黄瓜(Cucumis sativus L.,C_3植物)、谷子(Setaria italica (L.) Beauv.,一种不很典型的C_4植物)和玉米(Zea mays L.,C_4植物)叶片的叶绿素蛋白质复合物的影响。实验植物盆栽于聚乙烯薄膜(或玻璃)的开顶式培养室中。播种后对照室的CO_2浓度立即保持在大气浓度(350±10)×10^(-6)中,CO_2浓度倍增处理室则保持在(700±10)×10^(-6)下。研究结果表明,对于大豆、黄瓜和谷子,CO_2浓度倍增均使其PSⅡ捕光叶绿素a/b-蛋白质复合物(LHCⅡ)的聚合体态的量增多,单体态的量减少。但C_4植物玉米对CO_2浓度倍增没有这样的反应。作者认为在大豆等植物中,LHCⅡ的上述状态变化可能是植物的光合机构对长期高CO_2浓度的一种适应效应,这样能提高光合作用中光能的吸收、传递和转换的效率,并支持高效的光合碳素同化作用。展开更多
光合作用是绿色植物的重要生命过程,它与环境条件密切相关。多年来,人们不断地运用和发展各种检测技术,以研究光合作用在各种条件下的变化。其中体内叶绿素 a 荧光诱导动力学的测定技术,可以直接用绿色植物整体或含有叶绿素的部分器官(...光合作用是绿色植物的重要生命过程,它与环境条件密切相关。多年来,人们不断地运用和发展各种检测技术,以研究光合作用在各种条件下的变化。其中体内叶绿素 a 荧光诱导动力学的测定技术,可以直接用绿色植物整体或含有叶绿素的部分器官(如植物叶片)展开更多
Cucumber ( Cucumis sativus L.) LHC_Ⅱ complex, which consists of only one subunit (27 kD), was isolated and purified. 2_D crystallization was performed by batch method. The crystal is 0.7 μm×1.0 μm, and diff...Cucumber ( Cucumis sativus L.) LHC_Ⅱ complex, which consists of only one subunit (27 kD), was isolated and purified. 2_D crystallization was performed by batch method. The crystal is 0.7 μm×1.0 μm, and diffracts to 30 ?. The projection map of the negatively stained two_dimensional crystal of LHC_Ⅱ complex shows that the crystal has p3 symmetry, lattice constant 15.4 nm×15.4 nm, which is different from the LHC_Ⅱ of spinach (Spinacia oleracea L.) and pea (Pisum satium L.). A continuous tomographic tilt series, containing 12 projections from the two_dimensional crystal was subjected to 3_D reconstruction. The 3_D model represents that LHC_Ⅱ complex consists of 6 monomers. These trimer and dimer interactions build up the six member ring.展开更多
文摘研究了CO_2浓度倍增对大豆(Glycine max L.,C_3植物)、黄瓜(Cucumis sativus L.,C_3植物)、谷子(Setaria italica (L.) Beauv.,一种不很典型的C_4植物)和玉米(Zea mays L.,C_4植物)叶片的叶绿素蛋白质复合物的影响。实验植物盆栽于聚乙烯薄膜(或玻璃)的开顶式培养室中。播种后对照室的CO_2浓度立即保持在大气浓度(350±10)×10^(-6)中,CO_2浓度倍增处理室则保持在(700±10)×10^(-6)下。研究结果表明,对于大豆、黄瓜和谷子,CO_2浓度倍增均使其PSⅡ捕光叶绿素a/b-蛋白质复合物(LHCⅡ)的聚合体态的量增多,单体态的量减少。但C_4植物玉米对CO_2浓度倍增没有这样的反应。作者认为在大豆等植物中,LHCⅡ的上述状态变化可能是植物的光合机构对长期高CO_2浓度的一种适应效应,这样能提高光合作用中光能的吸收、传递和转换的效率,并支持高效的光合碳素同化作用。
文摘Cucumber ( Cucumis sativus L.) LHC_Ⅱ complex, which consists of only one subunit (27 kD), was isolated and purified. 2_D crystallization was performed by batch method. The crystal is 0.7 μm×1.0 μm, and diffracts to 30 ?. The projection map of the negatively stained two_dimensional crystal of LHC_Ⅱ complex shows that the crystal has p3 symmetry, lattice constant 15.4 nm×15.4 nm, which is different from the LHC_Ⅱ of spinach (Spinacia oleracea L.) and pea (Pisum satium L.). A continuous tomographic tilt series, containing 12 projections from the two_dimensional crystal was subjected to 3_D reconstruction. The 3_D model represents that LHC_Ⅱ complex consists of 6 monomers. These trimer and dimer interactions build up the six member ring.