期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
改进YOLOv8算法的城市车辆目标检测
1
作者 许德刚 +1 位作者 再庆 尹柯栋 《计算机工程与应用》 CSCD 北大核心 2024年第18期136-146,共11页
针对复杂交通场景下城市车辆目标检测算法存在的漏检、精度低、泛化能力弱的问题,提出一种改进的YOLOv8城市车辆目标检测算法。采用一种改进的GAM-C2f结构来代替主干网络中的C2f模块,平衡模型的计算效率和准确性;设计一种SPPFAPGC模块,... 针对复杂交通场景下城市车辆目标检测算法存在的漏检、精度低、泛化能力弱的问题,提出一种改进的YOLOv8城市车辆目标检测算法。采用一种改进的GAM-C2f结构来代替主干网络中的C2f模块,平衡模型的计算效率和准确性;设计一种SPPFAPGC模块,防止SPPF结构因最大池化操作所导致的局部特征丢失问题,提高特征图的丰富度,并进一步结合小目标检测头来加强对远处小目标车辆的检测能力,加强局部特征与全局特征的融合。为抑制低质量图像产生的有害梯度,使用WIOU损失函数代替CIoU,以提升网络的边界框回归性能,提高模型的收敛速度和回归精度。在Streets车辆数据集上的实验结果表明,与基准模型YOLOv8n相比,改进算法的mAP50和Recall分别提高了1.6和2.0个百分点,有效改善了城市交通场景下小目标车辆检测性能不佳的问题;在VisDrone2019数据集上进行验证,mAP50和Recall也分别提高了1.1和1.6个百分点,充分证明了改进算法的优越性。与其他先进主流算法相比,改进算法表现出了更高的准确率和查全率,表明改进算法在城市车辆检测任务中具有更好的性能。 展开更多
关键词 车辆目标检测 YOLOv8 C2f模块 SPPF模块 损失函数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部