期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于CEEMD-CNN-BiGRU-RF模型的短期风电功率预测 被引量:12
1
作者 曾亮 +1 位作者 兰欣 王珊珊 《可再生能源》 CAS CSCD 北大核心 2022年第2期190-195,共6页
风电功率的准确预测对电网的安全运行和经济调度起着重要作用,为进一步提高风电功率的预测精度,文章提出了一种基于CEEMD-CNN-BiGRU-RF模型的短期风电功率预测模型。首先,利用完全集成经验模态分解(CEEMD)对风电功率时间序列进行模态分... 风电功率的准确预测对电网的安全运行和经济调度起着重要作用,为进一步提高风电功率的预测精度,文章提出了一种基于CEEMD-CNN-BiGRU-RF模型的短期风电功率预测模型。首先,利用完全集成经验模态分解(CEEMD)对风电功率时间序列进行模态分解;其次,对分解的各个风电功率时间序列利用卷积神经网络(CNN)进行特征提取;再次,建立双向门控循环单元(Bi GRU)模型对各个风电功率时间序列进行预测,叠加各个分量的预测值;最后,对误差进行进一步分析与预测,利用随机森林(RF)进行误差修正,得到最终的风电功率预测值。实验仿真表明,该模型的预测效果明显优于传统模型,模型的平均绝对百分比误差(MAPE)仅为2.09%。 展开更多
关键词 风电功率预测 完全集成经验模态分解 卷积神经网络 双向门控循环单元 随机森林
下载PDF
基于浅层方法和深度网络集成的短期风电功率预测 被引量:4
2
作者 曾亮 +1 位作者 王珊珊 常雨芳 《现代电子技术》 2022年第11期118-124,共7页
风电功率的预测精度受到多种因素的影响,为进一步提高预测精度,提出一种基于浅层方法和深度网络集成的短期风电功率预测模型(GRA⁃GWO⁃SVR⁃AdaBoost⁃GRU),集成灰色关联度分析(GRA)、支持向量回归机(SVR)、自适应提升集成(AdaBoost)和门... 风电功率的预测精度受到多种因素的影响,为进一步提高预测精度,提出一种基于浅层方法和深度网络集成的短期风电功率预测模型(GRA⁃GWO⁃SVR⁃AdaBoost⁃GRU),集成灰色关联度分析(GRA)、支持向量回归机(SVR)、自适应提升集成(AdaBoost)和门控循环单元(GRU)等多种模型/方法。首先采用GRA计算变量之间的相关程度,选择相关性高的3个特征作为模型的输入;其次利用GWO算法对SVR的惩罚参数和核函数参数进行优化,建立GWO⁃SVR预测模型;然后采用AdaBoost集成模型构建强回归器进行预测;最后采用GRU模型对预测误差进行修正,将修正后的误差与预测结果进行叠加,得到最终预测值。仿真结果表明,该模型的预测结果的均方根误差和R⁃Square显著优于其他传统模型,有效提高了风电功率的预测精度。 展开更多
关键词 风电功率预测 参数优化 预测模型 灰色关联度分析 支持向量回归机 门控循环单元 强回归器 误差修正
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部