期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
提高锂离子电池负极的电化学储锂容量和倍率性能—三维互连碳管-NiO-SnO_(2)网格膜 被引量:1
1
作者 张世平 韩方明 +7 位作者 潘其军 林豆 陈干 朱晓光 邵成 吴年强 孟国文 《Science China Materials》 SCIE EI CAS CSCD 2023年第9期3493-3500,共8页
二氧化锡(SnO_(2))具有高的理论比容量,有望作为下一代锂离子电池负极材料.然而,Sn向SnO_(2)的不可逆转化以及充放电过程中巨大的体积变化限制了其实际的应用.本文基于三维互连多孔氧化铝模板,设计合成了一种由内腔同时填充NiO和SnO_(2... 二氧化锡(SnO_(2))具有高的理论比容量,有望作为下一代锂离子电池负极材料.然而,Sn向SnO_(2)的不可逆转化以及充放电过程中巨大的体积变化限制了其实际的应用.本文基于三维互连多孔氧化铝模板,设计合成了一种由内腔同时填充NiO和SnO_(2)纳米颗粒的碳管基元相互连接组成的三维碳管网格膜,可以直接作为自支撑的高性能锂离子电池负极.该复合框架利用了NiO和SnO_(2)纳米颗粒的协同作用,不仅能够促进Sn向SnO_(2)的可逆转变,提高首次库伦效率,而且还可以缓释充放电过程中SnO_(2)剧烈的体积变化.此外,相互连接的三维碳管框架可以负载大量NiO和SnO_(2)纳米颗粒,缩短Li+的扩散距离,并作为快速的电子传输通道.因此,这种独特的结构赋予了该电极超高的储锂容量和倍率性能在1 A g^(-1)循环200次后,比容量达到928.5 mA h g^(-1),并且在4 A g^(-1)的高电流密度下仍然具有633.5 mA h g^(-1)的比容量.总之,这种独特的一体化结构在锂离子电池等储能领域具有广阔的应用前景. 展开更多
关键词 充放电过程 锂离子电池 倍率性能 理论比容量 一体化结构 体积变化 三维互连 传输通道
原文传递
阻燃凝胶聚合物电解质的制备及其在高安全锂离子电池中的应用
2
作者 李星军 +2 位作者 阚永春 宋磊 胡源 《火灾科学》 CAS 北大核心 2023年第3期167-176,共10页
随着锂离子电池能量密度的不断提高,火灾事故愈发频繁,提高锂离子电池安全性能越来越受到重视。基于乙烯基膦酸二乙酯、季戊四醇四丙烯酸酯和商业电解液合成了阻燃凝胶聚合物电解质(DEVP-GPE),并对其组装的锂离子电池开展了电化学性能... 随着锂离子电池能量密度的不断提高,火灾事故愈发频繁,提高锂离子电池安全性能越来越受到重视。基于乙烯基膦酸二乙酯、季戊四醇四丙烯酸酯和商业电解液合成了阻燃凝胶聚合物电解质(DEVP-GPE),并对其组装的锂离子电池开展了电化学性能和火安全性能的研究。循环测试表明,石墨//DEVP-GPE//Li半电池在第1000圈时的容量维持率高达88.7%,明显高于商业电解液(25.8%),磷酸铁锂//DEVP-GPE//石墨全电池在0.5 C倍率下循环100次的容量维持率高达80.2%,平均库仑效率为99.73%,具有良好的循环稳定性。火焰燃烧测试结果表明,含磷DEVP-GPE的自熄时间仅为1.5 s。1 Ah容量级别袋式全电池的过热测试结果表明,阻燃型DEVP-GPE不起火只冒烟,而且不漏液。以上结果均证明制备的DEVP-GPE具有良好的火安全性能。通过对电解质热解过程的分析,含磷DEVP-GPE能够很好地限制内部电解液的挥发和热解,并且在燃烧时释放出磷自由基以中断燃烧链式反应。 展开更多
关键词 凝胶聚合物电解质 阻燃性能 锂离子电池 循环性能
下载PDF
PC/硅氧烷复合材料的阻燃抑烟机理研究 被引量:4
3
作者 金子钰 肖玉玲 +2 位作者 张紫璇 桂宙 《火灾科学》 CAS 北大核心 2021年第2期80-91,共12页
聚碳酸酯(PC)作为性能优异的工程塑料被广泛用于高铁、飞机等特殊领域,但其燃烧时热释放及产烟量较大,故对其进行抑烟阻燃改性便尤为重要。通过将商用有机硅阻燃剂与抗滴落剂复配制备PC复合材料,证明在添加3 wt%的有机硅阻燃剂后即可使P... 聚碳酸酯(PC)作为性能优异的工程塑料被广泛用于高铁、飞机等特殊领域,但其燃烧时热释放及产烟量较大,故对其进行抑烟阻燃改性便尤为重要。通过将商用有机硅阻燃剂与抗滴落剂复配制备PC复合材料,证明在添加3 wt%的有机硅阻燃剂后即可使PC达到V0级,LOI上升至34.5%,热释放速率峰值下降58.86%,烟及CO2释放速率峰值分别下降34.10%和68.05%。同时,通过扫描电镜等表征进一步对机理进行分析,即阻燃剂中的硅元素受热向表面迁移,形成致密绝热的隔热层,从而达到阻燃抑烟的作用。 展开更多
关键词 聚碳酸酯 硅系阻燃剂 阻燃 抑烟 机理研究
下载PDF
大豆的热分解特性及其动力学探究
4
作者 周一帆 姚丛雪 +4 位作者 王靖文 郭文文 宋磊 胡源 《化工学报》 EI CAS CSCD 北大核心 2020年第S02期187-194,共8页
动态热重分析(TGA)被用来研究大豆的热降解动力学,通过改变大豆热解时的升温速率(5,10,20和40℃/min)以及气氛条件(氮气和空气)探索了大豆在不同热解条件下的热解特性。并结合对相应热解条件下的动力学参数(表观活化能Ek)进行求解,探究... 动态热重分析(TGA)被用来研究大豆的热降解动力学,通过改变大豆热解时的升温速率(5,10,20和40℃/min)以及气氛条件(氮气和空气)探索了大豆在不同热解条件下的热解特性。并结合对相应热解条件下的动力学参数(表观活化能Ek)进行求解,探究了大豆的火灾安全性。结果表明,大豆的热解可以分为四个阶段:前两个阶段对应自由水和结晶水的脱除,后两个阶段对应主要成分(淀粉、蛋白质和脂肪)的次分解阶段和主要分解阶段。后两个阶段,由于氧气的存在,导致大豆的热分解出现了不同的历程,800℃时的残炭率降低。且与氮气气氛下热解相比,大豆在空气气氛下表现出更低的反应活化能和火灾安全性。 展开更多
关键词 热解 生物质 热力学 活化能 热重分析
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部