提出一种基于深度残差网络的轻量级指静脉识别算法。首先,以ResNet34为基础,使用深度可分离卷积代替传统卷积,加入SE(Squeeze and Excitation)注意力机制模块来提取手指静脉空间域上的细节特征,并引入宽度缩放因子,进一步压缩网络;其次...提出一种基于深度残差网络的轻量级指静脉识别算法。首先,以ResNet34为基础,使用深度可分离卷积代替传统卷积,加入SE(Squeeze and Excitation)注意力机制模块来提取手指静脉空间域上的细节特征,并引入宽度缩放因子,进一步压缩网络;其次,在训练中引入教师-学生网络模式,对轻量级深度残差网络进行知识蒸馏训练,并使用知识蒸馏损失、CurricularFace和交叉熵损失对网络进行联合监督,解决了轻量级深度残差网络因学习参数量较少引起的性能下降问题。分别在FV-USM数据集、Lab-Normal数据集和Lab-Special数据集上进行仿真实验,结果表明,同基于轻量级网络MobileFaceNet的识别算法相比,提出的算法有效提高了零误识识别率和Top1排序性能。展开更多
文摘提出一种基于深度残差网络的轻量级指静脉识别算法。首先,以ResNet34为基础,使用深度可分离卷积代替传统卷积,加入SE(Squeeze and Excitation)注意力机制模块来提取手指静脉空间域上的细节特征,并引入宽度缩放因子,进一步压缩网络;其次,在训练中引入教师-学生网络模式,对轻量级深度残差网络进行知识蒸馏训练,并使用知识蒸馏损失、CurricularFace和交叉熵损失对网络进行联合监督,解决了轻量级深度残差网络因学习参数量较少引起的性能下降问题。分别在FV-USM数据集、Lab-Normal数据集和Lab-Special数据集上进行仿真实验,结果表明,同基于轻量级网络MobileFaceNet的识别算法相比,提出的算法有效提高了零误识识别率和Top1排序性能。