The effects of two viscoelastic parameters on the thermal convection of a viscoelastic Oldroyd-B fluid in an open-top porous square box with constant heat flux are investigated. The results show that the increase of r...The effects of two viscoelastic parameters on the thermal convection of a viscoelastic Oldroyd-B fluid in an open-top porous square box with constant heat flux are investigated. The results show that the increase of relaxation time is able to destabilize the fluid flow leading to a higher heat transfer rate, while the increase of retardation time tends to stabilize the flow and suppress the heat transfer. The flow bifurcation appears earlier with the increase of the relaxation time and the decrease of the retardation time, re- suiting in more complicated flow patterns in the porous medium.展开更多
A numerical simulation is performed for thermal instability and heat transfer of viscoelastic fluids in bounded porous media under the bottom constant heat flux boundary condition. The results for six different combin...A numerical simulation is performed for thermal instability and heat transfer of viscoelastic fluids in bounded porous media under the bottom constant heat flux boundary condition. The results for six different combinations of relaxation and retardation times demonstrate the existence of the thermal instability induced flow bifurcation. It is found that the increase of the relaxation time can enhance the heat transfer efficiency by disturbing the fluid flow and facilitating the bifurcation. The increase of the retardation time can stabilize the flow and postpone the bifurcation, leading to simpler flow pattern and lower heat transfer rate.展开更多
This paper makes a numerical study of the buoyancy-driven convection of a viscoelastic fluid saturated in an open-top porous square box under the constant heat flux boundary condition. The effects of the relaxation an...This paper makes a numerical study of the buoyancy-driven convection of a viscoelastic fluid saturated in an open-top porous square box under the constant heat flux boundary condition. The effects of the relaxation and retardation times on the onset of the oscillatory convection, the convection heat transfer rate and the flow pattern transition are investigated. It is shown that a large relaxation time can destabilize the fluid flow leading to an early onset of the thermal convection and a high heat transfer rate, while a large retardation time tends to stabilize the flow and suppress the convection onset and the heat transfer. After the convection sets in, the flow bifurcation appears earlier with the increase of the relaxation time and the decrease of the retardation time, resulting in more complicated flow patterns in the porous medium. Furthermore, with the increase of the ratio of the relaxation time to the retardation time, the fluid may be blocked from flowing through the open-top boundary, which may be caused by the viscoelastic effect. Finally, the comparison of our results with those under isothermal heating boundary conditions reveals that the heat transfer rate correspo- nding to a constant heat flux boundary is always higher.展开更多
基金Project supported by the National Key Basic Research Development Program of China (973 Program, Grant Nos.2006CB705803, 2013CB531200)
文摘The effects of two viscoelastic parameters on the thermal convection of a viscoelastic Oldroyd-B fluid in an open-top porous square box with constant heat flux are investigated. The results show that the increase of relaxation time is able to destabilize the fluid flow leading to a higher heat transfer rate, while the increase of retardation time tends to stabilize the flow and suppress the heat transfer. The flow bifurcation appears earlier with the increase of the relaxation time and the decrease of the retardation time, re- suiting in more complicated flow patterns in the porous medium.
基金Project supported by the National Key Basic Research Development Program of China(973 Program,Grant Nos.2006CB705803,2013CB531200)the National Natural Science Foundation of China(Grant No.21571188)
文摘A numerical simulation is performed for thermal instability and heat transfer of viscoelastic fluids in bounded porous media under the bottom constant heat flux boundary condition. The results for six different combinations of relaxation and retardation times demonstrate the existence of the thermal instability induced flow bifurcation. It is found that the increase of the relaxation time can enhance the heat transfer efficiency by disturbing the fluid flow and facilitating the bifurcation. The increase of the retardation time can stabilize the flow and postpone the bifurcation, leading to simpler flow pattern and lower heat transfer rate.
基金supported by the National Key Basic Research Development Program of China(973 Program,Grant Nos.2006CB705803,2013CB531200)
文摘This paper makes a numerical study of the buoyancy-driven convection of a viscoelastic fluid saturated in an open-top porous square box under the constant heat flux boundary condition. The effects of the relaxation and retardation times on the onset of the oscillatory convection, the convection heat transfer rate and the flow pattern transition are investigated. It is shown that a large relaxation time can destabilize the fluid flow leading to an early onset of the thermal convection and a high heat transfer rate, while a large retardation time tends to stabilize the flow and suppress the convection onset and the heat transfer. After the convection sets in, the flow bifurcation appears earlier with the increase of the relaxation time and the decrease of the retardation time, resulting in more complicated flow patterns in the porous medium. Furthermore, with the increase of the ratio of the relaxation time to the retardation time, the fluid may be blocked from flowing through the open-top boundary, which may be caused by the viscoelastic effect. Finally, the comparison of our results with those under isothermal heating boundary conditions reveals that the heat transfer rate correspo- nding to a constant heat flux boundary is always higher.