针对标准均衡优化算法(EO)存在全局搜索和局部搜索的平衡能力不足以及易陷入局部最优的问题,提出了一种基于可变生成概率和多差分柯西变异的均衡优化算法(Variable generation probability and multi-difference Cauchy variation equil...针对标准均衡优化算法(EO)存在全局搜索和局部搜索的平衡能力不足以及易陷入局部最优的问题,提出了一种基于可变生成概率和多差分柯西变异的均衡优化算法(Variable generation probability and multi-difference Cauchy variation equilib-rium optimization algorithm,VDEO)。首先,结合Tent混沌映射增加初始化种群的多样性,为寻优提供基础;其次,引入可变的生成概率代替原始的固定值,使算法在迭代前期增加全局搜索能力,后期关注求解精度,以提升全局搜索和局部搜索的平衡能力;最后,融合多种差分策略和柯西变异帮助寻优过程跳出局部最优。针对包含单峰、多峰和固定维多峰在内的15个基准测试函数和CEC2022测试函数,将VDEO在多种维数下与EO,GWO,WOA,SCA,MFO,AOA,AVOA,BWO,AHA,POA这10个启发式算法进行仿真对比实验,并对基准测试函数的实验结果进行Wilcoxon秩和检验,实验结果表明,VDEO实现了更好的全局搜索和局部搜索的平衡,并具有更好的跳出局部最优的能力以及更高的收敛精度。展开更多
文摘针对标准均衡优化算法(EO)存在全局搜索和局部搜索的平衡能力不足以及易陷入局部最优的问题,提出了一种基于可变生成概率和多差分柯西变异的均衡优化算法(Variable generation probability and multi-difference Cauchy variation equilib-rium optimization algorithm,VDEO)。首先,结合Tent混沌映射增加初始化种群的多样性,为寻优提供基础;其次,引入可变的生成概率代替原始的固定值,使算法在迭代前期增加全局搜索能力,后期关注求解精度,以提升全局搜索和局部搜索的平衡能力;最后,融合多种差分策略和柯西变异帮助寻优过程跳出局部最优。针对包含单峰、多峰和固定维多峰在内的15个基准测试函数和CEC2022测试函数,将VDEO在多种维数下与EO,GWO,WOA,SCA,MFO,AOA,AVOA,BWO,AHA,POA这10个启发式算法进行仿真对比实验,并对基准测试函数的实验结果进行Wilcoxon秩和检验,实验结果表明,VDEO实现了更好的全局搜索和局部搜索的平衡,并具有更好的跳出局部最优的能力以及更高的收敛精度。