期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于YOLOv3的农田鸟类目标检测算法 被引量:7
1
作者 危疆树 曾令鹏 《激光与光电子学进展》 CSCD 北大核心 2022年第2期502-510,共9页
针对近年来鸟类啄食对农业生产带来的损失,通过实时检测鸟类优化传统驱鸟器开关策略,提出了一种基于YOLOv3检测鸟类的目标检测算法。该方法对YOLOv3网络中特征融合进行改进,将SE模块嵌入进主干网络的Darknet53网络中,关注不同通道特征... 针对近年来鸟类啄食对农业生产带来的损失,通过实时检测鸟类优化传统驱鸟器开关策略,提出了一种基于YOLOv3检测鸟类的目标检测算法。该方法对YOLOv3网络中特征融合进行改进,将SE模块嵌入进主干网络的Darknet53网络中,关注不同通道特征的重要程度。采用自适应空间特征融合(ASFF)增强网络中特征金字塔网络(FPN)的特征融合,提升各尺度的检测能力。引入CIOU边界框回归损失函数,将预测框和目标框在有重叠甚至包含等情况考虑进去,使目标框回归变得更加准确和稳定。改进后的YOLOv3模型在自制鸟类数据集上的精度均值(AP)达到96.65%,单张图像检测耗时仅为0.058 s,相比于原YOLOv3模型在检测速度变化不大的情况下AP提高了2.54百分点。该改进方法能达到很好的实时性和更佳的检测精度,对农田防治鸟害优化驱鸟器开关策略提供依据。 展开更多
关键词 视觉光学 目标检测 YOLOv3 SE模块 特征融合 边界框回归损失函数
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部