目的为解决修复后的投影数据与周围投影数据之间过渡不连续的问题,提出一种基于正弦图融合的CT金属伪影校正算法。方法通过预处理和K均值聚类技术将具有相同空间信息的组织聚在一起生成先验图像,并根据金属区域与先验图像的投影差异校...目的为解决修复后的投影数据与周围投影数据之间过渡不连续的问题,提出一种基于正弦图融合的CT金属伪影校正算法。方法通过预处理和K均值聚类技术将具有相同空间信息的组织聚在一起生成先验图像,并根据金属区域与先验图像的投影差异校正原始图像投影以得到校正后的投影数据,最后采用滤波反投影算法重建得到校正后的CT图像。结果在CT仿真数据验证中,基于先验插值的金属伪影校正(Fusion Prior-Based Metal Artifact Reduction,FP-MAR)算法在单金属校正和多金属校正中的峰值信噪比分别为0.943和0.915,比线性插值校正金属伪影(Linear Interpolation Based Metal Artifact Reduction,LI-MAR)算法分别增加了28.65%和44.55%;FP-MAR算法在单金属校正和多金属校正中的结构相似性分别为0.984和0.961,比LI-MAR算法分别增加了48.41%和64.27%。临床CT伪影影像验证中,FP-MAR算法校正后CT金属伪影的主观评价高于LI-MAR算法校正后的CT金属伪影图像,且二者差异有统计学意义。结论本研究提出的算法可有效解决修复后的投影数据与周围投影数据之间过渡不连续的问题,更好地保留金属结构附近的信息。展开更多
文摘目的为解决修复后的投影数据与周围投影数据之间过渡不连续的问题,提出一种基于正弦图融合的CT金属伪影校正算法。方法通过预处理和K均值聚类技术将具有相同空间信息的组织聚在一起生成先验图像,并根据金属区域与先验图像的投影差异校正原始图像投影以得到校正后的投影数据,最后采用滤波反投影算法重建得到校正后的CT图像。结果在CT仿真数据验证中,基于先验插值的金属伪影校正(Fusion Prior-Based Metal Artifact Reduction,FP-MAR)算法在单金属校正和多金属校正中的峰值信噪比分别为0.943和0.915,比线性插值校正金属伪影(Linear Interpolation Based Metal Artifact Reduction,LI-MAR)算法分别增加了28.65%和44.55%;FP-MAR算法在单金属校正和多金属校正中的结构相似性分别为0.984和0.961,比LI-MAR算法分别增加了48.41%和64.27%。临床CT伪影影像验证中,FP-MAR算法校正后CT金属伪影的主观评价高于LI-MAR算法校正后的CT金属伪影图像,且二者差异有统计学意义。结论本研究提出的算法可有效解决修复后的投影数据与周围投影数据之间过渡不连续的问题,更好地保留金属结构附近的信息。