现实世界存在着大量的时态数据,时态数据挖掘(temporal data mining,简称TDM)是近年来学术界关注的一个重要研究课题.相似性发现技术关注数据的发展变化,试图从时态数据中发现事物动态演化的相似性规律.分析和比较了近年来TDM研究中涉...现实世界存在着大量的时态数据,时态数据挖掘(temporal data mining,简称TDM)是近年来学术界关注的一个重要研究课题.相似性发现技术关注数据的发展变化,试图从时态数据中发现事物动态演化的相似性规律.分析和比较了近年来TDM研究中涉及的主要相似性发现技术.首先区分定义了3类时态数据:时间序列、事件序列和交易序列;然后分类并讨论了各种与序列相关的主要方法和技术,涉及相似性度量、序列抽象表示和搜索,以及各类挖掘任务及其算法操作;最后展望进一步研究的方向.展开更多
当前,针对知识网络的链路预测主要是基于网络拓扑结构的相似性,很少考虑作者的研究领域,导致信息利用不充分等问题,因此本文提出了双层知识网络的链路预测框架hypernet2vec。双层知识网络,即作者合著关系网络和学术领域关系网络,利用网...当前,针对知识网络的链路预测主要是基于网络拓扑结构的相似性,很少考虑作者的研究领域,导致信息利用不充分等问题,因此本文提出了双层知识网络的链路预测框架hypernet2vec。双层知识网络,即作者合著关系网络和学术领域关系网络,利用网络表示学习,分别将两层网络中的节点映射到低维的向量空间,再输入到专门设计的卷积神经网络中计算并进行链路预测。与经典的链路预测指标如RA指标、LP指标和LRW指标等相比,hypernet2vec模型预测的AUC(area under curve)值取得了显著的提升,平均提升幅度达11.17%。文章还从情报产生层面和复杂系统层面,对模型发生作用的深层机理进行了探讨。展开更多
文摘现实世界存在着大量的时态数据,时态数据挖掘(temporal data mining,简称TDM)是近年来学术界关注的一个重要研究课题.相似性发现技术关注数据的发展变化,试图从时态数据中发现事物动态演化的相似性规律.分析和比较了近年来TDM研究中涉及的主要相似性发现技术.首先区分定义了3类时态数据:时间序列、事件序列和交易序列;然后分类并讨论了各种与序列相关的主要方法和技术,涉及相似性度量、序列抽象表示和搜索,以及各类挖掘任务及其算法操作;最后展望进一步研究的方向.
文摘当前,针对知识网络的链路预测主要是基于网络拓扑结构的相似性,很少考虑作者的研究领域,导致信息利用不充分等问题,因此本文提出了双层知识网络的链路预测框架hypernet2vec。双层知识网络,即作者合著关系网络和学术领域关系网络,利用网络表示学习,分别将两层网络中的节点映射到低维的向量空间,再输入到专门设计的卷积神经网络中计算并进行链路预测。与经典的链路预测指标如RA指标、LP指标和LRW指标等相比,hypernet2vec模型预测的AUC(area under curve)值取得了显著的提升,平均提升幅度达11.17%。文章还从情报产生层面和复杂系统层面,对模型发生作用的深层机理进行了探讨。