期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多尺度一致性与注意力机制的视网膜血管分割网络
1
作者 吕佳 《光电子.激光》 CAS CSCD 北大核心 2024年第4期431-440,共10页
针对现有的视网膜血管分割方法存在对微血管和毛细血管的分割能力不足,导致血管断连和末端血管漏分,造成视网膜血管分割性能不佳的问题,本文提出一种基于多尺度一致性与注意力机制的视网膜血管分割网络(multi-scale consistency and att... 针对现有的视网膜血管分割方法存在对微血管和毛细血管的分割能力不足,导致血管断连和末端血管漏分,造成视网膜血管分割性能不佳的问题,本文提出一种基于多尺度一致性与注意力机制的视网膜血管分割网络(multi-scale consistency and attention mechanism U-Net,MCAU-Net)。首先,该网络在瓶颈特征层嵌入注意力细化模块(attention refinement module,ARM),能有效细化瓶颈层冗余的特征,抑制背景等无关像素的权值。其次,将上下文特征融合模块(context fusion module,CFM)与传统的跳跃连接相结合,以此补充在特征提取过程中逐渐丢失的信息,加强网络对微血管和毛细血管的构建能力。最后,基于网络的多尺度输出设计了一种多尺度一致性的训练方式,以增强网络对不同尺度特征的敏感性。在DRIVE和CHASE_DB1公开数据集上进行的对比实验表明本文网络具有良好的分割性能。 展开更多
关键词 视网膜血管分割 U-Net 多尺度 注意力机制
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部