The rapid growth of distributed photovoltaic(PV)has remarkable influence for the safe and economic operation of power systems.In view of the wide geographical distribution and a large number of distributed PV power st...The rapid growth of distributed photovoltaic(PV)has remarkable influence for the safe and economic operation of power systems.In view of the wide geographical distribution and a large number of distributed PV power stations,the current situation is that it is dificult to access the current dispatch data network.According to the temporal and spatial characteristics of distributed PV,a graph convolution algorithm based on adaptive learning of adjacency matrix is proposed to estimate the real-time output of distributed PV in regional power grid.The actual case study shows that the adaptive graph convolution model gives different adjacency matrixes for different PV stations,which makes the corresponding output estimation algorithm have higher accuracy.展开更多
Safety production is of great significance to the development of enterprises and society.Accidents often cause great losses because of the particularity environment of electric power.Therefore,it is important to impro...Safety production is of great significance to the development of enterprises and society.Accidents often cause great losses because of the particularity environment of electric power.Therefore,it is important to improve the safety supervision and protection in the electric power environment.In this paper,we simulate the actual electric power operation scenario by monitoring equipment and propose a real-time detection method of illegal actions based on human body key points to ensure safety behavior in real time.In this method,the human body key points in video frames were first extracted by the high-resolution network,and then classified in real time by spatial-temporal graph convolutional network.Experimental results show that this method can effectively detect illegal actions in the simulated scene.展开更多
基金the Science and Technology Program of State Grid Corporation of China(No.5211TZ1900S6)。
文摘The rapid growth of distributed photovoltaic(PV)has remarkable influence for the safe and economic operation of power systems.In view of the wide geographical distribution and a large number of distributed PV power stations,the current situation is that it is dificult to access the current dispatch data network.According to the temporal and spatial characteristics of distributed PV,a graph convolution algorithm based on adaptive learning of adjacency matrix is proposed to estimate the real-time output of distributed PV in regional power grid.The actual case study shows that the adaptive graph convolution model gives different adjacency matrixes for different PV stations,which makes the corresponding output estimation algorithm have higher accuracy.
基金the Science and Technology Program of State Grid Corporation of China(No.5211TZ1900S6)。
文摘Safety production is of great significance to the development of enterprises and society.Accidents often cause great losses because of the particularity environment of electric power.Therefore,it is important to improve the safety supervision and protection in the electric power environment.In this paper,we simulate the actual electric power operation scenario by monitoring equipment and propose a real-time detection method of illegal actions based on human body key points to ensure safety behavior in real time.In this method,the human body key points in video frames were first extracted by the high-resolution network,and then classified in real time by spatial-temporal graph convolutional network.Experimental results show that this method can effectively detect illegal actions in the simulated scene.