Weak localization and antilocalization are quantum transport phenomena that arise from the quantum interference in disordered metals.At low temperatures,they can give distinct temperature and magnetic field dependence...Weak localization and antilocalization are quantum transport phenomena that arise from the quantum interference in disordered metals.At low temperatures,they can give distinct temperature and magnetic field dependences in conductivity,allowing the symmetry of the system to be explored.In the past few years,they have also been observed in newly emergent topological materials,including topological insulators and topological semimetals.In contrast from the conventional electrons,in these new materials the quasiparticles are described as Dirac or Weyl fermions.In this article,we review our recent efforts on the theories of weak antilocalization and interaction-induced localization for Dirac and Weyl fermions in topological insulators and topological semimetals.展开更多
Spin-filter effect is predicted in a weak coupled junction composed of a nonmagnetic metal electrode and a zigzag carbon nanotube. This effect is induced by the magnetic edge states of the nanotube, and can produce sp...Spin-filter effect is predicted in a weak coupled junction composed of a nonmagnetic metal electrode and a zigzag carbon nanotube. This effect is induced by the magnetic edge states of the nanotube, and can produce spin- polarized current in the absence of an external magnetic field. We find that the spin polarization of the current changes its sign at the half-filling point of the nanotube, thus electric field control of spin transport can be realized. Furthermore, we find the coupling strength of the junction may cause a magnetic transition on the edge of the nanotube.展开更多
We investigate the particle-hole pair excitations of dipolar molecules in an optical lattice, which can be described with an extended Bose-Hubbard model. For strong enough dipole-dipole interaction, the particle-hole ...We investigate the particle-hole pair excitations of dipolar molecules in an optical lattice, which can be described with an extended Bose-Hubbard model. For strong enough dipole-dipole interaction, the particle-hole pair excitations can form bound states in one and two dimensions. With decreasing dipole-dipole interaction, the energies of the bound states increase and merge into the particle-hole continuous spectrum gradually. The existence regions, the energy spectra and the wave functions of the bound states are carefully studied and the symmetries of the bound states are analyzed with group theory. For a given dipole-dipole interaction, the number of bound states varies in momentum space and a number distribution of the bound states is illustrated. We also discuss how to observe these bound states in future experiments.展开更多
基金Project supported by the National Key R&D Program,China(Grant No.2016YFA0301700)the Research Grant Council,University Grants Committee,Hong Kong,China(Grant No.17303714)+1 种基金the National Natural Science Foundation of China(Grant No.11574127)the National Thousand-Young-Talents Program of China
文摘Weak localization and antilocalization are quantum transport phenomena that arise from the quantum interference in disordered metals.At low temperatures,they can give distinct temperature and magnetic field dependences in conductivity,allowing the symmetry of the system to be explored.In the past few years,they have also been observed in newly emergent topological materials,including topological insulators and topological semimetals.In contrast from the conventional electrons,in these new materials the quasiparticles are described as Dirac or Weyl fermions.In this article,we review our recent efforts on the theories of weak antilocalization and interaction-induced localization for Dirac and Weyl fermions in topological insulators and topological semimetals.
基金Supported by the National Natural Science Foundation of China under Grant No 90406017, and the National Key Basic Research Special Foundation (NKBRSF) of China, the RGC of Hong Kong under Grant 7041/07. We thank G. H. Chen and F. Wang for useful discussions.
文摘Spin-filter effect is predicted in a weak coupled junction composed of a nonmagnetic metal electrode and a zigzag carbon nanotube. This effect is induced by the magnetic edge states of the nanotube, and can produce spin- polarized current in the absence of an external magnetic field. We find that the spin polarization of the current changes its sign at the half-filling point of the nanotube, thus electric field control of spin transport can be realized. Furthermore, we find the coupling strength of the junction may cause a magnetic transition on the edge of the nanotube.
基金supported by the National Basic Research Program of China (Grant Nos. 2011CB921502)the National Natural Science Foundation of China (Grant No. 10934010)+1 种基金the Joint Research Projects of the National Natural Science Foundation of ChinaHong Kong Research Grant Council (Grant Nos. 11061160490 and N-HKU748/10)
文摘We investigate the particle-hole pair excitations of dipolar molecules in an optical lattice, which can be described with an extended Bose-Hubbard model. For strong enough dipole-dipole interaction, the particle-hole pair excitations can form bound states in one and two dimensions. With decreasing dipole-dipole interaction, the energies of the bound states increase and merge into the particle-hole continuous spectrum gradually. The existence regions, the energy spectra and the wave functions of the bound states are carefully studied and the symmetries of the bound states are analyzed with group theory. For a given dipole-dipole interaction, the number of bound states varies in momentum space and a number distribution of the bound states is illustrated. We also discuss how to observe these bound states in future experiments.