Y1.94-xMgxO2S:0.06Ti (0≤x≤0.10) phosphors with long afterglow were synthesized by solid state reaction route. The photoluminescence spectra, decay curves, thermoluminescent spectra and chromaticity coordinate curves...Y1.94-xMgxO2S:0.06Ti (0≤x≤0.10) phosphors with long afterglow were synthesized by solid state reaction route. The photoluminescence spectra, decay curves, thermoluminescent spectra and chromaticity coordinate curves were investigated. The results show that the luminescence intensity of Y1.94-xMgxO2S :0.06Ti (0≤x≤0. 10) phosphors decrease gradually with increasing Mg2+ ion content, and the shape of luminescence spectra and chromaticity coordinate change as well. Furthermore, two thermoluminescent peaks in single Ti-doped Y2O2S sample are found at 91.8 and 221.5℃, respectively. Nevertheless, significant different spectra were found for the Mg, Ti co-doped Y2O2S samples that three thermoluminescence peaks appear at 52.3, 141.7 and 226.8℃, respectively. These results indicate that the co-doped Mg ion changes the inherent trap depth of single Ti-doped Y2O2S: Ti phosphor, and induces simultaneously a new trap level in the Y1.94-xMgxO2S:0.06Ti phosphor. Based on the analysis of thermoluminescent spectra, photolumi-nescent spectra, decay curve and crystal structure defect, it was proposed that the varied structure defect and introduced new trap level by the doped Mg2+ ions should be responsible for reducing luminescence intensity and varying color in the Y1.94-x Mgx O2S : 0.06Ti phosphor.展开更多
基金Project supported by SRF for ROCS, SEM (2003-14), and Science and Technology Department of Zhejiang Province (2005C31019)
文摘Y1.94-xMgxO2S:0.06Ti (0≤x≤0.10) phosphors with long afterglow were synthesized by solid state reaction route. The photoluminescence spectra, decay curves, thermoluminescent spectra and chromaticity coordinate curves were investigated. The results show that the luminescence intensity of Y1.94-xMgxO2S :0.06Ti (0≤x≤0. 10) phosphors decrease gradually with increasing Mg2+ ion content, and the shape of luminescence spectra and chromaticity coordinate change as well. Furthermore, two thermoluminescent peaks in single Ti-doped Y2O2S sample are found at 91.8 and 221.5℃, respectively. Nevertheless, significant different spectra were found for the Mg, Ti co-doped Y2O2S samples that three thermoluminescence peaks appear at 52.3, 141.7 and 226.8℃, respectively. These results indicate that the co-doped Mg ion changes the inherent trap depth of single Ti-doped Y2O2S: Ti phosphor, and induces simultaneously a new trap level in the Y1.94-xMgxO2S:0.06Ti phosphor. Based on the analysis of thermoluminescent spectra, photolumi-nescent spectra, decay curve and crystal structure defect, it was proposed that the varied structure defect and introduced new trap level by the doped Mg2+ ions should be responsible for reducing luminescence intensity and varying color in the Y1.94-x Mgx O2S : 0.06Ti phosphor.