期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于关键点的半监督红外图像目标检测算法
被引量:
1
1
作者
沈
一
选
金韬
但俊
《激光与光电子学进展》
CSCD
北大核心
2023年第14期342-349,共8页
为提高红外图像中目标检测的精度,提出一种基于CenterNet与OMix增强的半监督红外图像目标检测算法(IRCC-OMix)。针对红外图像中锚框先验信息难以确定的问题,利用CenterNet作为主干模型,通过关键点检测红外图像中的目标。由于红外图像标...
为提高红外图像中目标检测的精度,提出一种基于CenterNet与OMix增强的半监督红外图像目标检测算法(IRCC-OMix)。针对红外图像中锚框先验信息难以确定的问题,利用CenterNet作为主干模型,通过关键点检测红外图像中的目标。由于红外图像标注成本昂贵,引入基于教师学生网络互学习的半监督学习方法,设计基于CenterNet与基于一致性的半监督红外图像目标检测(IRCC)模型。IRCC模型中的随机擦除(cutout)增强可能导致红外图像中的小目标消失,影响模型检测性能,因此采用一种基于目标的图像混合增强方法,提升算法对小目标的检测能力。在公开数据集FLIR上的实验结果表明,IRCC模型的平均精度均值(mAP)达到55.3%,与仅使用有标签数据训练情况相比,mAP提升1.9个百分点,说明该模型能够充分利用无标签数据、提高模型的鲁棒性。基于OMix增强的IRCC模型的mAP为56.8%,与使用cutout增强的IRCC模型相比提高1.5个百分点,取得了良好的检测性能。
展开更多
关键词
图像处理
目标检测
卷积神经网络
红外图像
半监督学习
原文传递
基于CNN-Transformer的城区地下水位预测
被引量:
1
2
作者
冯鹏宇
金韬
+1 位作者
沈
一
选
但俊
《计算机仿真》
北大核心
2023年第4期492-498,共7页
提出了一种将Transformer与卷积神经网络(CNN)相结合的城区地下水位预测模型。Transformer模型能够提取地下水位在时间序列上包含的关键信息,有效提升了模型的长时间预测能力;CNN能获取相邻监测站点地下水位数据之间的空间关联信息,使...
提出了一种将Transformer与卷积神经网络(CNN)相结合的城区地下水位预测模型。Transformer模型能够提取地下水位在时间序列上包含的关键信息,有效提升了模型的长时间预测能力;CNN能获取相邻监测站点地下水位数据之间的空间关联信息,使信息的提取更加丰富。使用开源地下水位数据集对模型进行训练,并进行仿真验证。仿真结果表明,在预测未来12个时刻的地下水位值时,CNN-Transformer模型预测结果整体的均方根误差值相比于循环神经网络(RNN)系列模型从0.2507米降到0.1427米,在未来第12个时刻的均方根误差也仅为0.2309米,验证了上述模型能实现长时间高精度的地下水位预测。
展开更多
关键词
地下水位预测
深度时序模型
卷积神经网络
下载PDF
职称材料
题名
基于关键点的半监督红外图像目标检测算法
被引量:
1
1
作者
沈
一
选
金韬
但俊
机构
浙江大学信息与电子工程学院
出处
《激光与光电子学进展》
CSCD
北大核心
2023年第14期342-349,共8页
基金
国家自然科学基金(61675180)。
文摘
为提高红外图像中目标检测的精度,提出一种基于CenterNet与OMix增强的半监督红外图像目标检测算法(IRCC-OMix)。针对红外图像中锚框先验信息难以确定的问题,利用CenterNet作为主干模型,通过关键点检测红外图像中的目标。由于红外图像标注成本昂贵,引入基于教师学生网络互学习的半监督学习方法,设计基于CenterNet与基于一致性的半监督红外图像目标检测(IRCC)模型。IRCC模型中的随机擦除(cutout)增强可能导致红外图像中的小目标消失,影响模型检测性能,因此采用一种基于目标的图像混合增强方法,提升算法对小目标的检测能力。在公开数据集FLIR上的实验结果表明,IRCC模型的平均精度均值(mAP)达到55.3%,与仅使用有标签数据训练情况相比,mAP提升1.9个百分点,说明该模型能够充分利用无标签数据、提高模型的鲁棒性。基于OMix增强的IRCC模型的mAP为56.8%,与使用cutout增强的IRCC模型相比提高1.5个百分点,取得了良好的检测性能。
关键词
图像处理
目标检测
卷积神经网络
红外图像
半监督学习
Keywords
image processing
object detection
convolutional neural network
infrared image
semi-supervised learning
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
原文传递
题名
基于CNN-Transformer的城区地下水位预测
被引量:
1
2
作者
冯鹏宇
金韬
沈
一
选
但俊
机构
浙江大学信息与电子工程学院
出处
《计算机仿真》
北大核心
2023年第4期492-498,共7页
基金
国家自然科学基金项目(61675180)
企业合作项目“液位监测系统研发”(校合-2021-KYY-546001-0003)。
文摘
提出了一种将Transformer与卷积神经网络(CNN)相结合的城区地下水位预测模型。Transformer模型能够提取地下水位在时间序列上包含的关键信息,有效提升了模型的长时间预测能力;CNN能获取相邻监测站点地下水位数据之间的空间关联信息,使信息的提取更加丰富。使用开源地下水位数据集对模型进行训练,并进行仿真验证。仿真结果表明,在预测未来12个时刻的地下水位值时,CNN-Transformer模型预测结果整体的均方根误差值相比于循环神经网络(RNN)系列模型从0.2507米降到0.1427米,在未来第12个时刻的均方根误差也仅为0.2309米,验证了上述模型能实现长时间高精度的地下水位预测。
关键词
地下水位预测
深度时序模型
卷积神经网络
Keywords
Groundwater level prediction
Deep time series model
Convolutional neural networks
分类号
TP391.9 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于关键点的半监督红外图像目标检测算法
沈
一
选
金韬
但俊
《激光与光电子学进展》
CSCD
北大核心
2023
1
原文传递
2
基于CNN-Transformer的城区地下水位预测
冯鹏宇
金韬
沈
一
选
但俊
《计算机仿真》
北大核心
2023
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部