Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a ...Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a mathematical model for multi-depot heterogeneous vehicle routing problem with soft time windows (MDHVRPSTW) is established. An improved ant colony optimization (IACO) is proposed for solving this model. First, MDHVRPSTW is transferred into different groups according to the nearest principle, and then the initial route is constructed by the scanning algorithm (SA). Secondly, genetic operators are introduced, and crossover probability and mutation probability are adaptively adjusted in order to improve the global search ability of the algorithm. Moreover, the smooth mechanism is used to improve the performance of the ant colony optimization (ACO). Finally, the 3-opt strategy is used to improve the local search ability. The proposed IACO was tested on three new instances that were generated randomly. The experimental results show that IACO is superior to the other three existing algorithms in terms of convergence speed and solution quality. Thus, the proposed method is effective and feasible, and the proposed model is meaningful.展开更多
为了克服蚁群算法(Ant Colony Optimization,ACO)搜索初期信息匮乏、信息素累积时间长、求解速度慢的缺点,结合具有快速全局搜索能力的遗传算法(genetic algorithm,GA),同时引入混沌搜索和平滑机制,采用混沌搜索产生初始种群可以克服生...为了克服蚁群算法(Ant Colony Optimization,ACO)搜索初期信息匮乏、信息素累积时间长、求解速度慢的缺点,结合具有快速全局搜索能力的遗传算法(genetic algorithm,GA),同时引入混沌搜索和平滑机制,采用混沌搜索产生初始种群可以克服生成大量非可行解的缺陷,加速染色体向最优解收敛,平滑机制有助于对搜索空间进行更有效的搜索,构成混沌蚁群优化算法(Chaos Ant Colony Optimization,CACO)。建立物流配送中心选址(logistic distribution center location)与车辆路径问题(vehicle routing problem,VRP)的数学模型,分别应用CACO和GA求解,对50客户规模的问题模型仿真,结果表明CACO优于GA。展开更多
基金The National Natural Science Foundation of China(No.61074147)the Natural Science Foundation of Guangdong Province(No.S2011010005059)+2 种基金the Foundation of Enterprise-University-Research Institute Cooperation from Guangdong Province and Ministry of Education of China(No.2012B091000171,2011B090400460)the Science and Technology Program of Guangdong Province(No.2012B050600028)the Science and Technology Program of Huadu District,Guangzhou(No.HD14ZD001)
文摘Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a mathematical model for multi-depot heterogeneous vehicle routing problem with soft time windows (MDHVRPSTW) is established. An improved ant colony optimization (IACO) is proposed for solving this model. First, MDHVRPSTW is transferred into different groups according to the nearest principle, and then the initial route is constructed by the scanning algorithm (SA). Secondly, genetic operators are introduced, and crossover probability and mutation probability are adaptively adjusted in order to improve the global search ability of the algorithm. Moreover, the smooth mechanism is used to improve the performance of the ant colony optimization (ACO). Finally, the 3-opt strategy is used to improve the local search ability. The proposed IACO was tested on three new instances that were generated randomly. The experimental results show that IACO is superior to the other three existing algorithms in terms of convergence speed and solution quality. Thus, the proposed method is effective and feasible, and the proposed model is meaningful.
文摘为了克服蚁群算法(Ant Colony Optimization,ACO)搜索初期信息匮乏、信息素累积时间长、求解速度慢的缺点,结合具有快速全局搜索能力的遗传算法(genetic algorithm,GA),同时引入混沌搜索和平滑机制,采用混沌搜索产生初始种群可以克服生成大量非可行解的缺陷,加速染色体向最优解收敛,平滑机制有助于对搜索空间进行更有效的搜索,构成混沌蚁群优化算法(Chaos Ant Colony Optimization,CACO)。建立物流配送中心选址(logistic distribution center location)与车辆路径问题(vehicle routing problem,VRP)的数学模型,分别应用CACO和GA求解,对50客户规模的问题模型仿真,结果表明CACO优于GA。