Terahertz time-domaln spectroscopy (THz-TDS) is used to study the spectral response of lithium niobate crystals (LiNbO3) in the far infrared region. The optical constants are derived from the measured complex refr...Terahertz time-domaln spectroscopy (THz-TDS) is used to study the spectral response of lithium niobate crystals (LiNbO3) in the far infrared region. The optical constants are derived from the measured complex refractive index. A giant birefringence is observed in this material, and the average refractive-index difference between the ordinary wave and the extraordinary wave, no - ne, can reach up to about 1.6. Such a large birefrlngence is attributed to the different p honon modes orAl(z) and E ( x , y ). This unusual property makes LiNbO3 a promising material to be used as a functional material in the terahertz region, e.g. employed as wave-plates and polarization separators.展开更多
With a view of detecting the effects of macromolecular crowding on the phase transition of DNA compaction confined in spherical space,Monte Carlo simulations of DNA compaction in free space,in confined spherical space...With a view of detecting the effects of macromolecular crowding on the phase transition of DNA compaction confined in spherical space,Monte Carlo simulations of DNA compaction in free space,in confined spherical space without crowders and in confined spherical space with crowders were performed separately.The simulation results indicate that macromolecular crowding effects on DNA compaction are dominant over the roles of multivalent counterions.In addition,effects of temperature on the phase transition of DNA compaction have been identified in confined spherical space with different radii.In confined spherical space without crowders,the temperature corresponding to phase transition depends on the radius of the confined spherical space linearly.In contrast,with the addition of crowders to the confined spherical space,effects of temperature on the phase transition of DNA compaction become insignificant,whereas the phase transition at different temperatures strongly depends on the size of crowder,and the critical volume fraction of crowders pertains to the diameter of crowder linearly.展开更多
We present an extended analytical model including the depletion effect and the dimension of ligand-receptor complex, aiming to elucidate their influences on endocytosis of spherocylindrical nanoparticles (NPs). It i...We present an extended analytical model including the depletion effect and the dimension of ligand-receptor complex, aiming to elucidate their influences on endocytosis of spherocylindrical nanoparticles (NPs). It is found that the dimension of ligand-receptor complex (δ) and the depletion effect interrelatedly govern the optimal conditions of NP endocytosis. The endocytosis phase diagram constructed in the space of NP radius and relative aspect ratio indicates that the endocytosis of NP is enhanced evidently by reducing the optimal radius and the threshold radius of endocytosed NP. Meanwhile, through thermodynamic and kinetic analysis of the diffusion of receptors, the dependence of diffusion length on depletion effect and the dimension of ligand-receptor complex can be identified in great detail. For small aspect ratio, diffusion length decreases with increasing concentration c of small bioparticles in cellular environment. Endocytosis speed corresponding to large radius R and high concentration c of small bioparticles strongly depends on the increasing (2r-δ). These results may show some highlights into the conscious design of NPs for diagnostic agents and therapeutic drug delivery applications.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 10390160.
文摘Terahertz time-domaln spectroscopy (THz-TDS) is used to study the spectral response of lithium niobate crystals (LiNbO3) in the far infrared region. The optical constants are derived from the measured complex refractive index. A giant birefringence is observed in this material, and the average refractive-index difference between the ordinary wave and the extraordinary wave, no - ne, can reach up to about 1.6. Such a large birefrlngence is attributed to the different p honon modes orAl(z) and E ( x , y ). This unusual property makes LiNbO3 a promising material to be used as a functional material in the terahertz region, e.g. employed as wave-plates and polarization separators.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11464004 and 11864006)the State Scholarship Fund,China(Grant No.20173015)Guizhou Scientific and Technological Program,China(Grant No.20185781)
文摘With a view of detecting the effects of macromolecular crowding on the phase transition of DNA compaction confined in spherical space,Monte Carlo simulations of DNA compaction in free space,in confined spherical space without crowders and in confined spherical space with crowders were performed separately.The simulation results indicate that macromolecular crowding effects on DNA compaction are dominant over the roles of multivalent counterions.In addition,effects of temperature on the phase transition of DNA compaction have been identified in confined spherical space with different radii.In confined spherical space without crowders,the temperature corresponding to phase transition depends on the radius of the confined spherical space linearly.In contrast,with the addition of crowders to the confined spherical space,effects of temperature on the phase transition of DNA compaction become insignificant,whereas the phase transition at different temperatures strongly depends on the size of crowder,and the critical volume fraction of crowders pertains to the diameter of crowder linearly.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11047022,11204045,and 11464004)the Tracking Key Program of Social Development of Guizhou Province,China(Grant Nos.SY20123089 and SZ20113069)+2 种基金the General Financial Grant from the China Postdoctoral Science Foundation(Grant No.2014M562341)the Research Foundation for Young University Teachers from Guizhou University(Grant No.201311)the College Innovation Talent Team of Guizhou Province,China(Grant No.(2014)32)
文摘We present an extended analytical model including the depletion effect and the dimension of ligand-receptor complex, aiming to elucidate their influences on endocytosis of spherocylindrical nanoparticles (NPs). It is found that the dimension of ligand-receptor complex (δ) and the depletion effect interrelatedly govern the optimal conditions of NP endocytosis. The endocytosis phase diagram constructed in the space of NP radius and relative aspect ratio indicates that the endocytosis of NP is enhanced evidently by reducing the optimal radius and the threshold radius of endocytosed NP. Meanwhile, through thermodynamic and kinetic analysis of the diffusion of receptors, the dependence of diffusion length on depletion effect and the dimension of ligand-receptor complex can be identified in great detail. For small aspect ratio, diffusion length decreases with increasing concentration c of small bioparticles in cellular environment. Endocytosis speed corresponding to large radius R and high concentration c of small bioparticles strongly depends on the increasing (2r-δ). These results may show some highlights into the conscious design of NPs for diagnostic agents and therapeutic drug delivery applications.