Polar auxin transport (PAT) is critical in plant growth and development, especially polar differentiation and pattern formation. Lots of studies have been performed in dicots while relative less in monocots. Using two...Polar auxin transport (PAT) is critical in plant growth and development, especially polar differentiation and pattern formation. Lots of studies have been performed in dicots while relative less in monocots. Using two kinds of PAT inhibitors, 2, 3, 5-triiodobenzoic acid (TIBA) and 9-hydroxyfluorene-9-carboxylic acid (HFCA), it was shown that PAT is important for rice (Oryza sativa L. cv. Zhonghua 11) root development, including elongation of the primary roots, initiation and elongation of lateral roots, and formation of adventitious roots. Inhibition of PAT resulted in the shortened primary roots, less and shortened lateral and adventitious roots. Exogenously supplemented NAA can partially rescue the formation of adventitious roots but not lateral roots, while low concentration of NAA (0.1 mumol/L) could not rescue either of them, suggesting the possible different mechanisms of lateral and adventitious root initiations. Treatment of 30 mumol/L TIBA did not completely inhibit the initiation of lateral roots, and survival capacities of which were demonstrated through cross section experiments revealing the presence of primordial of lateral roots at different stages. Further studies through localized application of PAT inhibitors indicated that auxin flow, transported from coleoptiles to the base, is not only responsible for the auxin contents in stem nodes but also critical for initiation and elongation of adventitious roots.展开更多
文摘Polar auxin transport (PAT) is critical in plant growth and development, especially polar differentiation and pattern formation. Lots of studies have been performed in dicots while relative less in monocots. Using two kinds of PAT inhibitors, 2, 3, 5-triiodobenzoic acid (TIBA) and 9-hydroxyfluorene-9-carboxylic acid (HFCA), it was shown that PAT is important for rice (Oryza sativa L. cv. Zhonghua 11) root development, including elongation of the primary roots, initiation and elongation of lateral roots, and formation of adventitious roots. Inhibition of PAT resulted in the shortened primary roots, less and shortened lateral and adventitious roots. Exogenously supplemented NAA can partially rescue the formation of adventitious roots but not lateral roots, while low concentration of NAA (0.1 mumol/L) could not rescue either of them, suggesting the possible different mechanisms of lateral and adventitious root initiations. Treatment of 30 mumol/L TIBA did not completely inhibit the initiation of lateral roots, and survival capacities of which were demonstrated through cross section experiments revealing the presence of primordial of lateral roots at different stages. Further studies through localized application of PAT inhibitors indicated that auxin flow, transported from coleoptiles to the base, is not only responsible for the auxin contents in stem nodes but also critical for initiation and elongation of adventitious roots.