期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于自然邻居和最小生成树的原型选择算法 被引量:3
1
作者 朱庆生 杨力 《计算机科学》 CSCD 北大核心 2017年第4期241-245,268,共6页
K最近邻居是最流行的有监督分类算法之一。然而,传统的K最近邻居有两个主要的问题:参数K的选择以及在大规模数据集下过高的时间和空间复杂度需求。为了解决这些问题,提出了一种新的原型选择算法,它保留了一些对分类贡献很大的关键原型点... K最近邻居是最流行的有监督分类算法之一。然而,传统的K最近邻居有两个主要的问题:参数K的选择以及在大规模数据集下过高的时间和空间复杂度需求。为了解决这些问题,提出了一种新的原型选择算法,它保留了一些对分类贡献很大的关键原型点,同时移除噪声点和大多数对分类贡献较小的点。不同于其他原型选择算法,该算法使用了自然邻居这个新的邻居概念来做数据预处理,然后基于设定的终止条件构建若干个最小生成树。基于最小生成树,保留边界原型,同时生成一些具有代表性的内部原型。基于UCI基准数据集进行实验,结果表明提出的算法有效地约简了原型的数量,同时保持了与传统KNN相同水平的分类准确率;而且,该算法在分类准确率和原型保留率上优于其他原型选择算法。 展开更多
关键词 K最近邻居 原型选择 自然邻居 最小生成树 分类
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部