Two-dimensional(2D)magnetic materials have aroused tremendous interest due to the 2D confinement of magnetism and potential applications in spintronic and valleytronic devices.However,most of the currently 2D magnetic...Two-dimensional(2D)magnetic materials have aroused tremendous interest due to the 2D confinement of magnetism and potential applications in spintronic and valleytronic devices.However,most of the currently 2D magnetic materials are achieved by the exfoliation from their bulks,of which the thickness and domain size are difficult to control,limiting the practical device applications.Here,we demonstrate the realization of thickness-tunable rhombohedral Cr_(2)Se_(3)nanosheets on different substrates via the chemical vapor deposition route.The magnetic transition temperature at about 75 K is observed.Furthermore,van der Waals heterostructures consisting of Cr_(2)Se_(3)nanosheets and monolayer WS2 are constructed.We observe the magnetic proximity effect in the heterostructures,which manifests the manipulation of the valley polarization in monolayer WS2.Our work contributes to the vapor growth and applications of 2D magnetic materials.展开更多
Three-dimensional(3D)nanoporous gold(NPG)shows promising applications in various fields.However,its most common fabrication strategy(i.e.,dealloying)faces the problems of high energy consumption,resource waste,the use...Three-dimensional(3D)nanoporous gold(NPG)shows promising applications in various fields.However,its most common fabrication strategy(i.e.,dealloying)faces the problems of high energy consumption,resource waste,the use of corrosive solvent,and residue of the sacrificial component.Here,we report a general bottom-up nanowelding strategy to fabricate high-purity NPG from Au nanoparticles(NPs),accomplished via interfacial self-assembly of the Au NPs into monolayer Au NP film,its subsequent layer-by-layer transfer onto a solid substrate,and direct current(DC)nanowelding.We show that the DC nanowelding process can gradually evolve the layered Au NP film into NPG at low temperatures within 10 s,while not damaging their spherical structure.This is because during the nanowelding,electrons are preferred to be localized at the high-resistance NP/NP junctions,whose electrostatic repulsion in turn strengthens their surface atom diffusion to initiate a mild solid-state diffusion nanowelding.Furthermore,when using differently sized Au NPs as the starting building blocks,this strategy allows readily tuning the thickness,ligament size,and pore size,thereby offering great flexibility to create functional porous nanomaterials,e.g.,electrocatalyst for methanol electrooxidation.Surely,low-temperature nanowelding can play a role for the production of diverse nanoporous materials from other NPs beyond Au NPs.展开更多
利用物理气相沉积法制备GaS二维纳米片,通过改变不同的生长条件对GaS纳米片实行可调控生长.采用光学显微镜(optical microscope,OM)、原子力显微镜(atomic force microscope,AFM)、激光共聚焦显微拉曼光谱仪(laser co-focusing micro-Ra...利用物理气相沉积法制备GaS二维纳米片,通过改变不同的生长条件对GaS纳米片实行可调控生长.采用光学显微镜(optical microscope,OM)、原子力显微镜(atomic force microscope,AFM)、激光共聚焦显微拉曼光谱仪(laser co-focusing micro-Raman spectrometer,LCRS)、扫描电子显微镜(scanning electron microscope,SEM)、X射线衍射仪(X-ray diffraction,XRD)及透射电子显微镜(transmission electron microscope,TEM)等分析仪器,对样品的化学成分及形貌结构进行一系列表征.结果表明:制备的GaS纳米片为三角形结构,横向尺寸为1~4μm,样品所得最薄三角形纳米片的厚度为2.5 nm,纳米片内表面组成均匀,为六方晶系,单晶结构,结晶性好,可以长时间在空气中稳定存在.展开更多
Polycarbosilane containing beryllium(BPCS) precursors was prepared by the reaction of polycarbosilane(PCS) with beryllium acetylacetone(Be(acac)2).The analysis of structures and components of BPCS demonstrates that th...Polycarbosilane containing beryllium(BPCS) precursors was prepared by the reaction of polycarbosilane(PCS) with beryllium acetylacetone(Be(acac)2).The analysis of structures and components of BPCS demonstrates that their main structures are basically the same as PCS.Ceramization of BPCS precursors shows that BPCS precursors are organic below 600 °C and inorganic at 800 °C.At 1400 °C,BPCS precursors convert into silicon carbide ceramics.The ceramization of different beryllium content precursors were studied,which show that beryllium plays an important role in the inhibition of crystalline grain growth of β-SiC at high temperature and it can adjust the dielectric constant of silicon carbide ceramics.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.52022029,91850116,51772084,62090035,and U19A2090)Hunan Provincial Natural Science Foundation of China(Grant Nos.2018RS3051 and 2018WK4004)the Key Program of the Hunan Provincial Science and Technology Department(Grant No.2019XK2001).
文摘Two-dimensional(2D)magnetic materials have aroused tremendous interest due to the 2D confinement of magnetism and potential applications in spintronic and valleytronic devices.However,most of the currently 2D magnetic materials are achieved by the exfoliation from their bulks,of which the thickness and domain size are difficult to control,limiting the practical device applications.Here,we demonstrate the realization of thickness-tunable rhombohedral Cr_(2)Se_(3)nanosheets on different substrates via the chemical vapor deposition route.The magnetic transition temperature at about 75 K is observed.Furthermore,van der Waals heterostructures consisting of Cr_(2)Se_(3)nanosheets and monolayer WS2 are constructed.We observe the magnetic proximity effect in the heterostructures,which manifests the manipulation of the valley polarization in monolayer WS2.Our work contributes to the vapor growth and applications of 2D magnetic materials.
基金supported by the National Natural Science Foundation of China (21872047 and 21673070)Hunan Key Laboratory of Two-Dimensional Materials (2018TP1010)。
文摘Three-dimensional(3D)nanoporous gold(NPG)shows promising applications in various fields.However,its most common fabrication strategy(i.e.,dealloying)faces the problems of high energy consumption,resource waste,the use of corrosive solvent,and residue of the sacrificial component.Here,we report a general bottom-up nanowelding strategy to fabricate high-purity NPG from Au nanoparticles(NPs),accomplished via interfacial self-assembly of the Au NPs into monolayer Au NP film,its subsequent layer-by-layer transfer onto a solid substrate,and direct current(DC)nanowelding.We show that the DC nanowelding process can gradually evolve the layered Au NP film into NPG at low temperatures within 10 s,while not damaging their spherical structure.This is because during the nanowelding,electrons are preferred to be localized at the high-resistance NP/NP junctions,whose electrostatic repulsion in turn strengthens their surface atom diffusion to initiate a mild solid-state diffusion nanowelding.Furthermore,when using differently sized Au NPs as the starting building blocks,this strategy allows readily tuning the thickness,ligament size,and pore size,thereby offering great flexibility to create functional porous nanomaterials,e.g.,electrocatalyst for methanol electrooxidation.Surely,low-temperature nanowelding can play a role for the production of diverse nanoporous materials from other NPs beyond Au NPs.
文摘利用物理气相沉积法制备GaS二维纳米片,通过改变不同的生长条件对GaS纳米片实行可调控生长.采用光学显微镜(optical microscope,OM)、原子力显微镜(atomic force microscope,AFM)、激光共聚焦显微拉曼光谱仪(laser co-focusing micro-Raman spectrometer,LCRS)、扫描电子显微镜(scanning electron microscope,SEM)、X射线衍射仪(X-ray diffraction,XRD)及透射电子显微镜(transmission electron microscope,TEM)等分析仪器,对样品的化学成分及形貌结构进行一系列表征.结果表明:制备的GaS纳米片为三角形结构,横向尺寸为1~4μm,样品所得最薄三角形纳米片的厚度为2.5 nm,纳米片内表面组成均匀,为六方晶系,单晶结构,结晶性好,可以长时间在空气中稳定存在.
基金Project(51074193)supported by the National Natural Science Foundation of ChinaProjects(2011AA7024034,2011AA7053016)supported by the National High Technology Research and Development Program of ChinaProject(LK0903)supported by State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,Donghua University,China
文摘Polycarbosilane containing beryllium(BPCS) precursors was prepared by the reaction of polycarbosilane(PCS) with beryllium acetylacetone(Be(acac)2).The analysis of structures and components of BPCS demonstrates that their main structures are basically the same as PCS.Ceramization of BPCS precursors shows that BPCS precursors are organic below 600 °C and inorganic at 800 °C.At 1400 °C,BPCS precursors convert into silicon carbide ceramics.The ceramization of different beryllium content precursors were studied,which show that beryllium plays an important role in the inhibition of crystalline grain growth of β-SiC at high temperature and it can adjust the dielectric constant of silicon carbide ceramics.