总结了目前最具代表性的3个全球集合预报系统(global ensemble forecast system,GEFS)——美国国家环境预报中心(National Centers for Environmental Prediction,NCEP)、欧洲中期天气预报中心(European Centre for Medium-Range Weathe...总结了目前最具代表性的3个全球集合预报系统(global ensemble forecast system,GEFS)——美国国家环境预报中心(National Centers for Environmental Prediction,NCEP)、欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)和加拿大气象中心(Canadian Meteoro-logical Centre,CMC)建成至今的发展概况。由于计算资源的不断扩展,各中心集合预报系统的模式分辨率、集合成员数也随之增加。同时各中心都在不断地致力于发展和完善初始和模式扰动方法,来更好地估计与初值和模式有关的不确定性,促进预报技巧的提高。其中初始扰动方法从最初的奇异向量法(ECMWF)、增殖向量法(NCEP)和观测扰动法(CMC)更新为现在的集合资料同化—奇异向量法(ECMWF)、重新尺度化集合转换法(NCEP)和集合卡尔曼滤波(CMC)。在估计模式不确定性方面,ECMWF和CMC都修订了各自的随机参数化方案和多参数化方案,NCEP最近也在模式中加入了随机全倾向扰动。为提高全球高影响天气预报的准确率,TIGGE计划(the THORPEX interactive grand global ensemble)的提出增进了国际间对多模式、多中心集合预报的合作研究,北美集合预报系统(North American ensemble forecast system,NAEFS)为建立全球多模式集合预报系统提供了业务框架,这都将有助于未来全球交互式业务预报系统的构建。展开更多
基于中国气象局(China Meterological Administration,CMA)高分辨率数值预报产品、欧洲中期数值预报中心(the European Center for Medium-range Weather Forecast,ECMWF)精细化数值预报产品和国家级地面观测站数据,采用小波分析方法及...基于中国气象局(China Meterological Administration,CMA)高分辨率数值预报产品、欧洲中期数值预报中心(the European Center for Medium-range Weather Forecast,ECMWF)精细化数值预报产品和国家级地面观测站数据,采用小波分析方法及滑动训练、最优融合等技术对模式误差序列进行时频处理,实现了对模式系统误差和局地误差的订正,发展了西北区智能网格气温客观预报方法(northwest intelligent grid temperature objective prediction method,NWTM)。以2017年3月—2018年2月数据作为训练样本,对2018年3月—2019年1月西北区239个国家基本站进行检验。结果表明:1)NWTM对CMA和ECMWF两种模式产品的气温预报能力有显著的提升;随着预报时效增长,两种模式订正产品的误差增大。2)NWTM对ECMWF西北区最高气温的订正效果要明显优于CMA,但就最低气温而言,NWTM对CMA的订正效果更为显著。其中,就24 h最高气温而言,ECMWF在宁夏的订正效果最好,CMA在青海的订正效果最好;而对于24 h最低气温的预报,CMA在西北4省的订正效果相差不大,ECMWF在陕西的订正效果最好。3)空间误差检验表明:针对最高气温的预报,ECMWF订正产品的订正能力明显优于CMA,特别是在甘肃河西走廊和中东部、陕西北部和南部、宁夏中南部及青海大部。就最低气温的预报而言,ECMWF和CMA对甘肃河东和陕西南部的订正能力较好;ECMWF订正产品在宁夏中南部及青海南部的订正能力高于CMA,而CMA订正产品在陕西中部的订正能力更优。展开更多
利用CWRF(Climate-Weather Research and Forecasting model)对中国区域气候的31 a多物理集合模拟试验,分析了该模式对青藏高原气温和降水的模拟效果及其对水平分辨率和物理过程参数化方案的敏感性。结果表明:1)CWRF降尺度全面改善了全...利用CWRF(Climate-Weather Research and Forecasting model)对中国区域气候的31 a多物理集合模拟试验,分析了该模式对青藏高原气温和降水的模拟效果及其对水平分辨率和物理过程参数化方案的敏感性。结果表明:1)CWRF降尺度全面改善了全球模式对高原气温和降水的模拟,使气温年循环的均方根误差减小近1℃,月降水量年循环的均方根误差减小10~40 mm,同时显著提高了各月气温和降水与实测资料年际变化的相关系数,最高提升0.6;2)模式分辨率对降水模拟有显著影响,不同分辨率模拟降水差异高达60 mm(54%),模拟偏差随分辨率提高先降低后上升,转折在30 km左右;3)物理过程参数化方案对气温和降水模拟影响显著,不同方案模拟的各月平均气温相差1~4℃,夏季各月降水量相差20~100 mm,其中对气温模拟影响最大的是辐射方案,对降水影响最大的是积云方案。本文为CWRF局地优化对物理参数化及水平分辨率等如何选择提供了依据。展开更多
文摘总结了目前最具代表性的3个全球集合预报系统(global ensemble forecast system,GEFS)——美国国家环境预报中心(National Centers for Environmental Prediction,NCEP)、欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)和加拿大气象中心(Canadian Meteoro-logical Centre,CMC)建成至今的发展概况。由于计算资源的不断扩展,各中心集合预报系统的模式分辨率、集合成员数也随之增加。同时各中心都在不断地致力于发展和完善初始和模式扰动方法,来更好地估计与初值和模式有关的不确定性,促进预报技巧的提高。其中初始扰动方法从最初的奇异向量法(ECMWF)、增殖向量法(NCEP)和观测扰动法(CMC)更新为现在的集合资料同化—奇异向量法(ECMWF)、重新尺度化集合转换法(NCEP)和集合卡尔曼滤波(CMC)。在估计模式不确定性方面,ECMWF和CMC都修订了各自的随机参数化方案和多参数化方案,NCEP最近也在模式中加入了随机全倾向扰动。为提高全球高影响天气预报的准确率,TIGGE计划(the THORPEX interactive grand global ensemble)的提出增进了国际间对多模式、多中心集合预报的合作研究,北美集合预报系统(North American ensemble forecast system,NAEFS)为建立全球多模式集合预报系统提供了业务框架,这都将有助于未来全球交互式业务预报系统的构建。
文摘基于中国气象局(China Meterological Administration,CMA)高分辨率数值预报产品、欧洲中期数值预报中心(the European Center for Medium-range Weather Forecast,ECMWF)精细化数值预报产品和国家级地面观测站数据,采用小波分析方法及滑动训练、最优融合等技术对模式误差序列进行时频处理,实现了对模式系统误差和局地误差的订正,发展了西北区智能网格气温客观预报方法(northwest intelligent grid temperature objective prediction method,NWTM)。以2017年3月—2018年2月数据作为训练样本,对2018年3月—2019年1月西北区239个国家基本站进行检验。结果表明:1)NWTM对CMA和ECMWF两种模式产品的气温预报能力有显著的提升;随着预报时效增长,两种模式订正产品的误差增大。2)NWTM对ECMWF西北区最高气温的订正效果要明显优于CMA,但就最低气温而言,NWTM对CMA的订正效果更为显著。其中,就24 h最高气温而言,ECMWF在宁夏的订正效果最好,CMA在青海的订正效果最好;而对于24 h最低气温的预报,CMA在西北4省的订正效果相差不大,ECMWF在陕西的订正效果最好。3)空间误差检验表明:针对最高气温的预报,ECMWF订正产品的订正能力明显优于CMA,特别是在甘肃河西走廊和中东部、陕西北部和南部、宁夏中南部及青海大部。就最低气温的预报而言,ECMWF和CMA对甘肃河东和陕西南部的订正能力较好;ECMWF订正产品在宁夏中南部及青海南部的订正能力高于CMA,而CMA订正产品在陕西中部的订正能力更优。
文摘利用CWRF(Climate-Weather Research and Forecasting model)对中国区域气候的31 a多物理集合模拟试验,分析了该模式对青藏高原气温和降水的模拟效果及其对水平分辨率和物理过程参数化方案的敏感性。结果表明:1)CWRF降尺度全面改善了全球模式对高原气温和降水的模拟,使气温年循环的均方根误差减小近1℃,月降水量年循环的均方根误差减小10~40 mm,同时显著提高了各月气温和降水与实测资料年际变化的相关系数,最高提升0.6;2)模式分辨率对降水模拟有显著影响,不同分辨率模拟降水差异高达60 mm(54%),模拟偏差随分辨率提高先降低后上升,转折在30 km左右;3)物理过程参数化方案对气温和降水模拟影响显著,不同方案模拟的各月平均气温相差1~4℃,夏季各月降水量相差20~100 mm,其中对气温模拟影响最大的是辐射方案,对降水影响最大的是积云方案。本文为CWRF局地优化对物理参数化及水平分辨率等如何选择提供了依据。