期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于YOLOv5的轻量化端到端手机检测方法 被引量:3
1
作者 刘星 蔡乐才 +3 位作者 陈波杰 成奎 高祥 《电子测量技术》 北大核心 2023年第1期188-196,共9页
针对监控图像中手机尺寸较小、分辨率低且特征不明显等问题,给检测算法研究带来了困难。提出了一种改进的YOLOv5网络模型方法用来识别手机的使用。改进的检测算法引入轻量级网络GhostNet作为主干提取网络,将GhostConv模块、C3Ghost模块... 针对监控图像中手机尺寸较小、分辨率低且特征不明显等问题,给检测算法研究带来了困难。提出了一种改进的YOLOv5网络模型方法用来识别手机的使用。改进的检测算法引入轻量级网络GhostNet作为主干提取网络,将GhostConv模块、C3Ghost模块分别代替主干网络中的Conv基本卷积模块和C3模块,减小网络参数和复杂度;同时,将注意力机制CBAM引入到主干网络中,减少融合后冗余特征的影响,提取到目标区域中更加关键的特征信息;使用四尺度特征检测,在原算法基础上对应的增加检测层,用以提高更小目标的检测精度。实验结果表明,改进后的YOLOv5算法准确率达到95.7%,平均精度达到97.1%,比改进前训练的准确率和平均精度分别提升了2.5%和1.8%,运算量和参数量较改进前分别减少了14.3%和24.5%。改进的YOLOv5算法不仅具有轻量化优势,同时保证了准确率和平均精度。该方法为智能监测技术行业违规使用手机提供了理论依据和技术参考。 展开更多
关键词 手机检测 轻量化 YOLOv5 GhostNet
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部