期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
面向空气质量预测的多粒度突变拟合网络
1
作者 石乾宏 杨燕 +5 位作者 江永全 欧阳小草 范武波 陈强 姜涛 李媛 《计算机应用》 CSCD 北大核心 2024年第8期2643-2650,共8页
空气质量数据作为一种典型的时空数据,具有复杂的多尺度内在特性并存在突变的问题。针对现有空气质量预测方法在处理包含大量突变数据的空气质量预测任务时表现不佳的问题,提出一种面向空气质量预测的多粒度突变拟合网络(MACFN)。首先,... 空气质量数据作为一种典型的时空数据,具有复杂的多尺度内在特性并存在突变的问题。针对现有空气质量预测方法在处理包含大量突变数据的空气质量预测任务时表现不佳的问题,提出一种面向空气质量预测的多粒度突变拟合网络(MACFN)。首先,针对空气质量数据在时间上的周期性,对输入数据进行了多粒度的特征提取。然后,采用图卷积网络与时间卷积网络分别提取空气质量数据的空间关联性与时间依赖性。最后,设计一个突变拟合网络自适应地学习数据中的突变部分,从而减小预测误差。所提网络在3个真实的空气质量数据集上进行了实验评估,与多尺度时空网络(MSSTN)相比,均方根误差(RMSE)分别下降约11.6%、6.3%和2.2%。实验结果表明,MACFN能有效捕捉复杂的时空关系,并在变化幅度较大、易发生突变的空气质量预测任务中有更好表现。 展开更多
关键词 空气质量预测 深度学习 时空特征 多粒度 突变
下载PDF
CMvSC:知识迁移下的深度一致性多视图谱聚类网络 被引量:4
2
作者 张熠玲 杨燕 +2 位作者 周威 欧阳小草 胡节 《软件学报》 EI CSCD 北大核心 2022年第4期1373-1389,共17页
谱聚类是聚类分析中极具代表性的方法之一,由于其对数据结构没有太多假设要求,受到了研究者们的广泛关注.但传统的谱聚类算法通常受到谱嵌入的可扩展性和泛化性的限制,即:无法应对大规模设置和复杂数据分布.为克服以上缺陷,旨在引入深... 谱聚类是聚类分析中极具代表性的方法之一,由于其对数据结构没有太多假设要求,受到了研究者们的广泛关注.但传统的谱聚类算法通常受到谱嵌入的可扩展性和泛化性的限制,即:无法应对大规模设置和复杂数据分布.为克服以上缺陷,旨在引入深度学习框架提升谱聚类的泛化能力与可扩展能力,同时,结合多视图学习挖掘数据样本的多样性特征,从而提出一种知识迁移下的深度一致性多视图谱聚类网络(CMvSC).首先,考虑到单个视图的局部不变性,CMvSC采用局部学习层独立学习每个视图的特有嵌入;其次,由于多视图具有全局一致性,CMvSC引入全局学习层进行参数共享与特征迁移,学习多视图间的共享嵌入;同时,考虑到邻接矩阵对谱聚类性能的重要影响,CMvSC通过训练孪生网络和设计对比损失来学习成对数据间的近邻关系,以替代传统谱聚类算法中的距离度量;最后,4个数据集上的实验结果证明了CMvSC对多视图谱聚类任务的有效性. 展开更多
关键词 谱嵌入 近邻学习 知识迁移 多视图聚类 深度聚类
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部