针对蚁群聚类算法在聚类结果中出现部分数据划分不够准确的问题,提出一种基于信息熵调整的自适应混沌蚁群聚类改进算法。该算法通过优化过程中种群的信息熵来衡量演化的程度,自适应地调整信息素更新策略。每一次迭代结束时,使用混沌搜...针对蚁群聚类算法在聚类结果中出现部分数据划分不够准确的问题,提出一种基于信息熵调整的自适应混沌蚁群聚类改进算法。该算法通过优化过程中种群的信息熵来衡量演化的程度,自适应地调整信息素更新策略。每一次迭代结束时,使用混沌搜索算子在当前全局最优解附近搜索更好的解。而随着算法的进行,混沌算子搜索范围逐渐缩小,这样混沌算子在蚁群搜索的初期起到防止陷入局部最优的作用,在蚁群搜索后期起到提高搜索精度的作用,从而得到更好的聚类结果。使用KDD Cup 1999入侵检测数据集所作的仿真实验结果表明,聚类效果改进明显,并能有效提高入侵检测的检测率、降低误检率。展开更多
针对量子蚁群算法求解组合优化问题时易陷入局部最优和收敛速度慢的问题,提出一种基于博弈论的量子蚁群算法(quantum ant colony algorithm based on the game theory,GQACA)。算法采用重复博弈模型,在重复博弈中产生一个博弈序列,使得...针对量子蚁群算法求解组合优化问题时易陷入局部最优和收敛速度慢的问题,提出一种基于博弈论的量子蚁群算法(quantum ant colony algorithm based on the game theory,GQACA)。算法采用重复博弈模型,在重复博弈中产生一个博弈序列,使得每次博弈都能够产生最大效益,并得到相应博弈过程的纳什均衡。利用典型的5个标准测试函数对GQACA算法寻优性能进行试验测试。试验结果表明:GQACA算法的收敛精度和稳定性均要优于量子蚁群算法(quantum ant colony algorithm,QACA)和蚁群算法(ant colony algorithm,ACA)。展开更多
文摘针对蚁群聚类算法在聚类结果中出现部分数据划分不够准确的问题,提出一种基于信息熵调整的自适应混沌蚁群聚类改进算法。该算法通过优化过程中种群的信息熵来衡量演化的程度,自适应地调整信息素更新策略。每一次迭代结束时,使用混沌搜索算子在当前全局最优解附近搜索更好的解。而随着算法的进行,混沌算子搜索范围逐渐缩小,这样混沌算子在蚁群搜索的初期起到防止陷入局部最优的作用,在蚁群搜索后期起到提高搜索精度的作用,从而得到更好的聚类结果。使用KDD Cup 1999入侵检测数据集所作的仿真实验结果表明,聚类效果改进明显,并能有效提高入侵检测的检测率、降低误检率。
文摘针对量子蚁群算法求解组合优化问题时易陷入局部最优和收敛速度慢的问题,提出一种基于博弈论的量子蚁群算法(quantum ant colony algorithm based on the game theory,GQACA)。算法采用重复博弈模型,在重复博弈中产生一个博弈序列,使得每次博弈都能够产生最大效益,并得到相应博弈过程的纳什均衡。利用典型的5个标准测试函数对GQACA算法寻优性能进行试验测试。试验结果表明:GQACA算法的收敛精度和稳定性均要优于量子蚁群算法(quantum ant colony algorithm,QACA)和蚁群算法(ant colony algorithm,ACA)。