A 1064 nm Nd:YAG laser was used to of the spectral lines measured from the laserablated ablate fly ash samples. The characteristics fly ash plasmas are presented with special attention to atomic and molecular carbon ...A 1064 nm Nd:YAG laser was used to of the spectral lines measured from the laserablated ablate fly ash samples. The characteristics fly ash plasmas are presented with special attention to atomic and molecular carbon emission. It is shown that the intensity of the atomic line C I 192.9 nm is weak and the shot-to-shot intensity is fluctuant. The carbon atomic line C I 247.7 nm is relatively intensive and stable, however it is seriously interfered with by Fe I 247.8 nm. The intensity of the CN molecular line is close to that of C I 247.7 nm and the CN line is stable and less interfered with. The comparison of molecular CN emission under different conditions (air, Ar and N2) shows that the CN lines detected from the plasmas formed in an atmospheric environment are correlated with the reaction of carbon atoms in the plasma with the nitrogen in air, which indicates that the CN line is also important in pulsed laser ablation fly ash plasmas and this information can be incorporated in the detection of unburned carbon content in fly ash. Finally, a calibration curve is established with a correlation coefficient R2 of 0.999, using C I 247.7 nm and the CN molecular line as associated variables. In addition, accuracy is improved to a certain extent.展开更多
基金supported by National Natural Science Foundation of China(Nos.51071069 and 51476061)Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization,China(No.2013A061401005)Key Laboratory of Efficient and Clean Energy Utilization of Guangdong Higher Education Institutes of China(No.KLB10004)
文摘A 1064 nm Nd:YAG laser was used to of the spectral lines measured from the laserablated ablate fly ash samples. The characteristics fly ash plasmas are presented with special attention to atomic and molecular carbon emission. It is shown that the intensity of the atomic line C I 192.9 nm is weak and the shot-to-shot intensity is fluctuant. The carbon atomic line C I 247.7 nm is relatively intensive and stable, however it is seriously interfered with by Fe I 247.8 nm. The intensity of the CN molecular line is close to that of C I 247.7 nm and the CN line is stable and less interfered with. The comparison of molecular CN emission under different conditions (air, Ar and N2) shows that the CN lines detected from the plasmas formed in an atmospheric environment are correlated with the reaction of carbon atoms in the plasma with the nitrogen in air, which indicates that the CN line is also important in pulsed laser ablation fly ash plasmas and this information can be incorporated in the detection of unburned carbon content in fly ash. Finally, a calibration curve is established with a correlation coefficient R2 of 0.999, using C I 247.7 nm and the CN molecular line as associated variables. In addition, accuracy is improved to a certain extent.