大量基于深度学习的无监督视频目标分割(Unsupervised video object segmentation,UVOS)算法存在模型参数量与计算量较大的问题,这显著限制了算法在实际中的应用.提出了基于运动引导的视频目标分割网络,在大幅降低模型参数量与计算量的...大量基于深度学习的无监督视频目标分割(Unsupervised video object segmentation,UVOS)算法存在模型参数量与计算量较大的问题,这显著限制了算法在实际中的应用.提出了基于运动引导的视频目标分割网络,在大幅降低模型参数量与计算量的同时,提升视频目标分割性能.整个模型由双流网络、运动引导模块、多尺度渐进融合模块三部分组成.具体地,首先,RGB图像与光流估计输入双流网络提取物体外观特征与运动特征;然后,运动引导模块通过局部注意力提取运动特征中的语义信息,用于引导外观特征学习丰富的语义信息;最后,多尺度渐进融合模块获取双流网络的各个阶段输出的特征,将深层特征渐进地融入浅层特征,最终提升边缘分割效果.在3个标准数据集上进行了大量评测,实验结果表明了该方法的优越性能.展开更多
文摘大量基于深度学习的无监督视频目标分割(Unsupervised video object segmentation,UVOS)算法存在模型参数量与计算量较大的问题,这显著限制了算法在实际中的应用.提出了基于运动引导的视频目标分割网络,在大幅降低模型参数量与计算量的同时,提升视频目标分割性能.整个模型由双流网络、运动引导模块、多尺度渐进融合模块三部分组成.具体地,首先,RGB图像与光流估计输入双流网络提取物体外观特征与运动特征;然后,运动引导模块通过局部注意力提取运动特征中的语义信息,用于引导外观特征学习丰富的语义信息;最后,多尺度渐进融合模块获取双流网络的各个阶段输出的特征,将深层特征渐进地融入浅层特征,最终提升边缘分割效果.在3个标准数据集上进行了大量评测,实验结果表明了该方法的优越性能.