期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
边界注意力辅助的动态图卷积视网膜血管分割 被引量:5
1
作者 吕佳 王泽宇 《光电工程》 CAS CSCD 北大核心 2023年第1期31-42,共12页
针对视网膜血管分割任务中存在的毛细血管分割遗漏和断连的问题,从最大限度地利用视网膜血管的特征信息的角度出发,添补视网膜血管的全局结构信息和边界信息,在U型网络的基础上,提出边界注意力辅助的动态图卷积视网膜血管分割网络。本... 针对视网膜血管分割任务中存在的毛细血管分割遗漏和断连的问题,从最大限度地利用视网膜血管的特征信息的角度出发,添补视网膜血管的全局结构信息和边界信息,在U型网络的基础上,提出边界注意力辅助的动态图卷积视网膜血管分割网络。本模型先将动态图卷积嵌入到U型网络中形成多尺度结构,提升模型获取全局结构信息的能力,以提高分割质量,再利用边界注意力网络辅助模型,增加模型对边界信息的关注度,进一步提高分割性能。将模型在DRIVE、CHASEDB1和STARE三个视网膜图像数据集上进行实验,均取得了较好的分割效果。实验结果证明,该模型能较好地区分噪声和毛细血管,分割出结构较完整的视网膜血管,具有泛化性和鲁棒性。 展开更多
关键词 医学图像处理 视网膜血管分割 U型网络 动态图卷积网络 边界注意力网络
下载PDF
基于图卷积的视网膜血管轮廓及高不确定度区域细化框架
2
作者 吕佳 王泽宇 《光电子.激光》 CAS CSCD 北大核心 2023年第6期654-662,共9页
针对传统卷积神经网络(convolutional neural network,CNN)受感受野大小的限制,无法直接有效地获取空间结构及全局语义等关键信息,导致宽血管边界及毛细血管区域特征提取困难,造成视网膜血管分割表现不佳的问题,提出一种基于图卷积的视... 针对传统卷积神经网络(convolutional neural network,CNN)受感受野大小的限制,无法直接有效地获取空间结构及全局语义等关键信息,导致宽血管边界及毛细血管区域特征提取困难,造成视网膜血管分割表现不佳的问题,提出一种基于图卷积的视网膜血管分割细化框架。该框架通过轮廓提取及不确定分析方法,选取CNN粗分割结果中潜在的误分割区域,并结合其提取的特征信息构造出合适的图数据,送入残差图卷积网络(residual graph convolutional network,Res-GCN)二次分类,得到视网膜血管细化分割结果。该框架可以作为一个即插即用模块接入任意视网膜血管分割网络的末端,具有高移植性和易用性的特点。实验分别选用U型网络(U-neural network,U-Net)及其代表性改进网络DenseU-Net和AttU-Net作为基准网络,在DRIVE、STARE和CHASEDB1数据集上进行测试,本文框架的Sp分别为98.28%、99.10%和99.04%,Pr分别为87.97%、88.87%和90.25%,证明其具有提升基准网络分割效果的细化能力。 展开更多
关键词 视网膜血管分割 卷积神经网络(CNN) 图卷积网络(GCN) 不确定度分析 轮廓提取
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部