Boron phosphide(BP)has gained significant research attention due to its unique photoelectric and mechanical properties.In this work,we investigated the stability of BP under high pressure using x-ray diffraction and s...Boron phosphide(BP)has gained significant research attention due to its unique photoelectric and mechanical properties.In this work,we investigated the stability of BP under high pressure using x-ray diffraction and scanning electron microscope.The phase diagram of BP was explored in both B-rich and P-rich environments,revealing crucial insight into its behavior at 5.0 GPa.Additionally,we measured the melting curve of BP from 8.0 GPa to 15.0 GPa.Our findings indicate that the stability of BP under high pressure is improved within B-rich and P-rich environments.Furthermore,we report a remarkable observation of melting curve frustration at 10.0 GPa.This study will enhance our understanding of stability of BP under high pressure,shedding light on its potential application in semiconductor,thermal,and light-transmitting devices.展开更多
Silicon carbide(SiC)is a high-performance structural ceramic material with excellent comprehensive properties,and is unmatched by metals and other structural materials.In this paper,raw SiC powder with an average grai...Silicon carbide(SiC)is a high-performance structural ceramic material with excellent comprehensive properties,and is unmatched by metals and other structural materials.In this paper,raw SiC powder with an average grain size of 5μm was sintered by an isothermal-compression process at 5.0 GPa and 1500?C;the maximum hardness of the sintered samples was31.3 GPa.Subsequently,scanning electron microscopy was used to observe the microscopic morphology of the recovered SiC samples treated in a temperature and extended pressure range of 0-1500?C and 0-16.0 GPa,respectively.Defects and plastic deformation in the SiC grains were further analyzed by transmission electron microscopy.Further,high-pressure in situ synchrotron radiation x-ray diffraction was used to study the intergranular stress distribution and yield strength under non-hydrostatic compression.This study provides a new viewpoint for the sintering of pure phase micron-sized SiC particles.展开更多
Structural stability in terms of the decomposition temperature in LiMn_(2)O_(4) was systematically investigated by a series of high-temperature and high-pressure experiments.LiMn_(2)O_(4) was found to have structural ...Structural stability in terms of the decomposition temperature in LiMn_(2)O_(4) was systematically investigated by a series of high-temperature and high-pressure experiments.LiMn_(2)O_(4) was found to have structural stability up to 5 GPa at room temperature.Under ambient pressure,the compound decomposed at 1300℃.The decomposition temperature decreased with increasing pressure,yielding more complex decomposed products.Below the decomposition temperature,the crystal structure of LiMn_(2)O_(4) varied with pressure.The presented results in this study offer new insights into the thermal and pressure stability of LiMn_(2)O_(4) materials as a cathode for lithium-ion batteries that can operate under extreme conditions.Therefore,these findings may serve as a useful guide for future work for improving lithium-ion batteries.展开更多
As one of important members of refractory materials,tungsten phosphide(WP)holds great potential for fundamental study and industrial applications in many fields of science and technology,due to its excellent propertie...As one of important members of refractory materials,tungsten phosphide(WP)holds great potential for fundamental study and industrial applications in many fields of science and technology,due to its excellent properties such as superconductivity and as-predicted topological band structure.However,synthesis of high-quality WP crystals is still a challenge by using tradition synthetic methods,because the synthesis temperature for growing its large crystals is very stringently required to be as high as 3000℃,which is far beyond the temperature capability of most laboratory-based devices for crystal growth.In addition,high temperature often induces the decomposition of metal phosphides,leading to off-stoichiometric samples based on which the materials'intrinsic properties cannot be explored.In this work,we report a high-pressure synthesis of single-crystal WP through a direct crystallization from cooling the congruent W-P melts at 5 GPa and^3200℃.In combination of x-ray diffraction,electron microscope,and thermal analysis,the crystal structure,morphology,and stability of recovered sample are well investigated.The final product is phase-pure and nearly stoichiometric WP in a single-crystal form with a large grain size,in excess of one millimeter,thus making it feasible to implement most experimental measurements,especially,for the case where a large crystal is required.Success in synthesis of high-quality WP crystals at high pressure can offer great opportunities for determining their intrinsic properties and also making more efforts to study the family of transition-metal phosphides.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.12074273)the Sichuan Science and Technology Program (Grant No.2022NSFSC1810)。
文摘Boron phosphide(BP)has gained significant research attention due to its unique photoelectric and mechanical properties.In this work,we investigated the stability of BP under high pressure using x-ray diffraction and scanning electron microscope.The phase diagram of BP was explored in both B-rich and P-rich environments,revealing crucial insight into its behavior at 5.0 GPa.Additionally,we measured the melting curve of BP from 8.0 GPa to 15.0 GPa.Our findings indicate that the stability of BP under high pressure is improved within B-rich and P-rich environments.Furthermore,we report a remarkable observation of melting curve frustration at 10.0 GPa.This study will enhance our understanding of stability of BP under high pressure,shedding light on its potential application in semiconductor,thermal,and light-transmitting devices.
基金the National Natural Science Foundation of China(Grant No.12074273)。
文摘Silicon carbide(SiC)is a high-performance structural ceramic material with excellent comprehensive properties,and is unmatched by metals and other structural materials.In this paper,raw SiC powder with an average grain size of 5μm was sintered by an isothermal-compression process at 5.0 GPa and 1500?C;the maximum hardness of the sintered samples was31.3 GPa.Subsequently,scanning electron microscopy was used to observe the microscopic morphology of the recovered SiC samples treated in a temperature and extended pressure range of 0-1500?C and 0-16.0 GPa,respectively.Defects and plastic deformation in the SiC grains were further analyzed by transmission electron microscopy.Further,high-pressure in situ synchrotron radiation x-ray diffraction was used to study the intergranular stress distribution and yield strength under non-hydrostatic compression.This study provides a new viewpoint for the sintering of pure phase micron-sized SiC particles.
基金by the National Natural Science Foundation of China(Grant No.12074273)the Doctoral Research Fund of Southwest University of Science and Technology(Grant No.20zx7136).
文摘Structural stability in terms of the decomposition temperature in LiMn_(2)O_(4) was systematically investigated by a series of high-temperature and high-pressure experiments.LiMn_(2)O_(4) was found to have structural stability up to 5 GPa at room temperature.Under ambient pressure,the compound decomposed at 1300℃.The decomposition temperature decreased with increasing pressure,yielding more complex decomposed products.Below the decomposition temperature,the crystal structure of LiMn_(2)O_(4) varied with pressure.The presented results in this study offer new insights into the thermal and pressure stability of LiMn_(2)O_(4) materials as a cathode for lithium-ion batteries that can operate under extreme conditions.Therefore,these findings may serve as a useful guide for future work for improving lithium-ion batteries.
基金the National Key Research and Development Program of China(Grant Nos.2016YFA0401503 and 2018YFA0305700)the National Natural Science Foundation of China(Grant No.11575288)+4 种基金the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2016006)the Key Research Platforms and Research Projects of Universities in Guangdong Province,China(Grant No.2018KZDXM062)the Guangdong Innovative&Entrepreneurial Research Team Program,China(Grant No.2016ZT06C279)the Shenzhen Peacock Plan,China(Grant No.KQTD2016053019134356)the Shenzhen Development&Reform Commission Foundation for Novel Nano-Material Sciences,China,the Research Platform for Crystal Growth&Thin-Film Preparation at SUST,China,and the Shenzhen Development and Reform Commission Foundation for Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressure,China.
文摘As one of important members of refractory materials,tungsten phosphide(WP)holds great potential for fundamental study and industrial applications in many fields of science and technology,due to its excellent properties such as superconductivity and as-predicted topological band structure.However,synthesis of high-quality WP crystals is still a challenge by using tradition synthetic methods,because the synthesis temperature for growing its large crystals is very stringently required to be as high as 3000℃,which is far beyond the temperature capability of most laboratory-based devices for crystal growth.In addition,high temperature often induces the decomposition of metal phosphides,leading to off-stoichiometric samples based on which the materials'intrinsic properties cannot be explored.In this work,we report a high-pressure synthesis of single-crystal WP through a direct crystallization from cooling the congruent W-P melts at 5 GPa and^3200℃.In combination of x-ray diffraction,electron microscope,and thermal analysis,the crystal structure,morphology,and stability of recovered sample are well investigated.The final product is phase-pure and nearly stoichiometric WP in a single-crystal form with a large grain size,in excess of one millimeter,thus making it feasible to implement most experimental measurements,especially,for the case where a large crystal is required.Success in synthesis of high-quality WP crystals at high pressure can offer great opportunities for determining their intrinsic properties and also making more efforts to study the family of transition-metal phosphides.