期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
高光谱图像去噪的稀疏空谱Transformer模型
1
作者
杨智翔
孙玉宝
+1 位作者
白志远
栾
鸿
康
《电子测量技术》
北大核心
2024年第1期150-158,共9页
现阶段Transformer模型的应用提升了高光谱图像去噪的性能,但原始Transformer模型对图像空间-光谱耦合关联性的利用仍存在不足;对空间特征的处理存在过于平滑,容易丢失小尺度结构的现象;同时在光谱维度上也过于关注全部通道特征,缺乏对...
现阶段Transformer模型的应用提升了高光谱图像去噪的性能,但原始Transformer模型对图像空间-光谱耦合关联性的利用仍存在不足;对空间特征的处理存在过于平滑,容易丢失小尺度结构的现象;同时在光谱维度上也过于关注全部通道特征,缺乏对不同光谱波段间差异性的利用;为了应对这些问题,本文提出了一种新的稀疏空谱Transformer模型,提升了对空谱耦合关联性的利用。在空间维度,引入局部增强模块增强空间特征细节,应对过平滑问题;同时在光谱维度上提出了Top-k稀疏自注意力机制,自适应选择前K个最相关的光谱通道特征进行特征交互,从而能够有效捕获空谱特征。最终通过稀疏空谱Transformer的层级残差连接实现高光谱图像的去噪。在ICVL数据集上分别对高斯噪声和复杂噪声进行去噪处理,峰值信噪比分别达到40.56 dB和40.19 dB,证明了本文提出的稀疏空谱Transformer模型优越的性能。
展开更多
关键词
高光谱图像去噪
空间-光谱联合特征
稀疏Transformer
下载PDF
职称材料
耦合单词与句子级文本特征的图像对抗级联生成
2
作者
白志远
杨智翔
+1 位作者
栾
鸿
康
孙玉宝
《计算机工程与科学》
CSCD
北大核心
2023年第12期2186-2196,共11页
文本生成图像旨在根据自然语言描述生成逼真的图像,是一个涉及文本与图像的跨模态分析任务。鉴于生成对抗网络具有生成图像逼真、效率高等优势,已经成为文本生成图像任务的主流模型。然而,当前方法往往将文本特征分为单词级和句子级单...
文本生成图像旨在根据自然语言描述生成逼真的图像,是一个涉及文本与图像的跨模态分析任务。鉴于生成对抗网络具有生成图像逼真、效率高等优势,已经成为文本生成图像任务的主流模型。然而,当前方法往往将文本特征分为单词级和句子级单独训练,文本信息利用不充分,容易导致生成的图像与文本不匹配的问题。针对该问题,提出了一种耦合单词级与句子级文本特征的图像对抗级联生成模型(Union-GAN),在每个图像生成阶段引入了文本图像联合感知模块(Union-Block),使用通道仿射变换和跨模态注意力相结合的方式,充分利用了文本的单词级语义与整体语义信息,促使生成的图像既符合文本语义描述又能够保持清晰结构。同时联合优化鉴别器,将空间注意力加入到对应的鉴别器中,使来自文本的监督信号促使生成器生成更加相关的图像。在CUB-200-2011数据集上将其与AttnGAN等多个当前的代表性模型进行了对比,实验结果表明,Union-GAN的FID分数达到了13.67,与AttnGAN相比,提高了42.9%,IS分数达到了4.52,提高了0.16。
展开更多
关键词
文本生成图像
生成对抗网络
多模态任务
下载PDF
职称材料
题名
高光谱图像去噪的稀疏空谱Transformer模型
1
作者
杨智翔
孙玉宝
白志远
栾
鸿
康
机构
南京信息工程大学计算机学院网络空间安全学院
出处
《电子测量技术》
北大核心
2024年第1期150-158,共9页
基金
国家自然科学基金(62276139,U2001211)项目资助。
文摘
现阶段Transformer模型的应用提升了高光谱图像去噪的性能,但原始Transformer模型对图像空间-光谱耦合关联性的利用仍存在不足;对空间特征的处理存在过于平滑,容易丢失小尺度结构的现象;同时在光谱维度上也过于关注全部通道特征,缺乏对不同光谱波段间差异性的利用;为了应对这些问题,本文提出了一种新的稀疏空谱Transformer模型,提升了对空谱耦合关联性的利用。在空间维度,引入局部增强模块增强空间特征细节,应对过平滑问题;同时在光谱维度上提出了Top-k稀疏自注意力机制,自适应选择前K个最相关的光谱通道特征进行特征交互,从而能够有效捕获空谱特征。最终通过稀疏空谱Transformer的层级残差连接实现高光谱图像的去噪。在ICVL数据集上分别对高斯噪声和复杂噪声进行去噪处理,峰值信噪比分别达到40.56 dB和40.19 dB,证明了本文提出的稀疏空谱Transformer模型优越的性能。
关键词
高光谱图像去噪
空间-光谱联合特征
稀疏Transformer
Keywords
hyperspectral image denoising
spatial-spectral joint feature
sparse Transformer
分类号
TP751 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
耦合单词与句子级文本特征的图像对抗级联生成
2
作者
白志远
杨智翔
栾
鸿
康
孙玉宝
机构
南京信息工程大学计算机学院
南京信息工程大学计算机学院江苏省大数据分析技术实验室
出处
《计算机工程与科学》
CSCD
北大核心
2023年第12期2186-2196,共11页
基金
国家自然科学基金(U2001211,62276139)。
文摘
文本生成图像旨在根据自然语言描述生成逼真的图像,是一个涉及文本与图像的跨模态分析任务。鉴于生成对抗网络具有生成图像逼真、效率高等优势,已经成为文本生成图像任务的主流模型。然而,当前方法往往将文本特征分为单词级和句子级单独训练,文本信息利用不充分,容易导致生成的图像与文本不匹配的问题。针对该问题,提出了一种耦合单词级与句子级文本特征的图像对抗级联生成模型(Union-GAN),在每个图像生成阶段引入了文本图像联合感知模块(Union-Block),使用通道仿射变换和跨模态注意力相结合的方式,充分利用了文本的单词级语义与整体语义信息,促使生成的图像既符合文本语义描述又能够保持清晰结构。同时联合优化鉴别器,将空间注意力加入到对应的鉴别器中,使来自文本的监督信号促使生成器生成更加相关的图像。在CUB-200-2011数据集上将其与AttnGAN等多个当前的代表性模型进行了对比,实验结果表明,Union-GAN的FID分数达到了13.67,与AttnGAN相比,提高了42.9%,IS分数达到了4.52,提高了0.16。
关键词
文本生成图像
生成对抗网络
多模态任务
Keywords
text-to-image generation
generative adversarial network(GAN)
multimodal task
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
高光谱图像去噪的稀疏空谱Transformer模型
杨智翔
孙玉宝
白志远
栾
鸿
康
《电子测量技术》
北大核心
2024
0
下载PDF
职称材料
2
耦合单词与句子级文本特征的图像对抗级联生成
白志远
杨智翔
栾
鸿
康
孙玉宝
《计算机工程与科学》
CSCD
北大核心
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部