针对传统ORB(Oriented FAST and Rotated BRIEF)算法提取图像特征时存在的特征点数量不足且分布不均匀问题,提出了一种基于四叉树的ORB特征阶梯分布算法。通过四叉树算法分割出特征点疏密不同的区域,对每个区域采用逐步降低阈值的方法,...针对传统ORB(Oriented FAST and Rotated BRIEF)算法提取图像特征时存在的特征点数量不足且分布不均匀问题,提出了一种基于四叉树的ORB特征阶梯分布算法。通过四叉树算法分割出特征点疏密不同的区域,对每个区域采用逐步降低阈值的方法,实现FAST(Features from Accelerated Segment Test)角点自适应提取;同时依据分割区域设置逐次递减的分割深度和特征点提取比例,以减少运算时间和特征冗余,使特征点分布更均匀。采用覆盖均匀度对特征点的均匀性进行量化。试验结果表明,该算法比传统ORB算法单幅图片的特征点提取数量平均多10.45%,覆盖均匀度平均低20%,运行时间比Mur-Artal算法平均减少20.54%,有效地提高了提取特征点的数量和均匀性,提升了运算效率。展开更多
文摘针对传统ORB(Oriented FAST and Rotated BRIEF)算法提取图像特征时存在的特征点数量不足且分布不均匀问题,提出了一种基于四叉树的ORB特征阶梯分布算法。通过四叉树算法分割出特征点疏密不同的区域,对每个区域采用逐步降低阈值的方法,实现FAST(Features from Accelerated Segment Test)角点自适应提取;同时依据分割区域设置逐次递减的分割深度和特征点提取比例,以减少运算时间和特征冗余,使特征点分布更均匀。采用覆盖均匀度对特征点的均匀性进行量化。试验结果表明,该算法比传统ORB算法单幅图片的特征点提取数量平均多10.45%,覆盖均匀度平均低20%,运行时间比Mur-Artal算法平均减少20.54%,有效地提高了提取特征点的数量和均匀性,提升了运算效率。