期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Zoom-FFT-CEEMD和小波包降噪的风电机组齿轮箱故障特征提取和诊断
1
作者 孟井煜枫 +3 位作者 张铖 吴博阳 徐国平 俞健 《微特电机》 2024年第4期28-32,37,共6页
基于信号处理的风电机组齿轮箱故障诊断是风力发电领域中的重要研究方向。针对风电机组齿轮箱故障特征提取问题,提出了一种基于Zoom-FFT-CEEMD和小波包降噪的方法。通过对在风电机组齿轮箱振动测点所采集到各个测点的振动加速度信号做RM... 基于信号处理的风电机组齿轮箱故障诊断是风力发电领域中的重要研究方向。针对风电机组齿轮箱故障特征提取问题,提出了一种基于Zoom-FFT-CEEMD和小波包降噪的方法。通过对在风电机组齿轮箱振动测点所采集到各个测点的振动加速度信号做RMS趋势分析,找出RMS趋势明显上升的测点和时间段。利用小波包降噪技术对该测点的振动信号进行降噪处理,互补集合经验模态分解(CEEMD)得到的分量对振动信号进行多尺度分析,再使用Zoom算法对齿轮箱振动信号进行局部放大,以突出故障信号。利用快速傅里叶变换(FFT)对放大后的信号进行频谱分析,以提高故障特征的提取准确性。实验结果表明,与传统频谱分析法相比,该方法能够有效地提取风电机组齿轮箱的故障特征,具有较高的准确性和稳定性,为风电机组齿轮箱的早期故障诊断提供了一种有效的方法。 展开更多
关键词 齿轮箱 互补集合经验模态分解 细化快速傅里叶变换 小波包 特征提取 故障诊断
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部