为了解决复数域下基于QR分解的LLL(A.K.Lenstra,H.W.Lenstra and L.Lovász)算法中复Givens旋转矩形式不统一的问题,文章从复数域下原始LLL算法中Gram-Schmidt系数与QR分解的上三角矩阵R中元素之间的关系出发,证明了上三角矩阵R的...为了解决复数域下基于QR分解的LLL(A.K.Lenstra,H.W.Lenstra and L.Lovász)算法中复Givens旋转矩形式不统一的问题,文章从复数域下原始LLL算法中Gram-Schmidt系数与QR分解的上三角矩阵R中元素之间的关系出发,证明了上三角矩阵R的元素与Gram-Schmidt系数以及Lovász条件之间的等价的关系;从复数的指数形式出发,推导出2种适合LLL算法的复Givens旋转矩阵形式,并证明只有其中一种符合Lovász条件下复Givens旋转矩阵形式。仿真结果表明,采用基于QR分解的复数域LLL算法的MIMO系统相比采用基于Gram-Schmidt正交化LLL算法的MIMO系统具有更好的误比特率性能。展开更多
文摘为了解决复数域下基于QR分解的LLL(A.K.Lenstra,H.W.Lenstra and L.Lovász)算法中复Givens旋转矩形式不统一的问题,文章从复数域下原始LLL算法中Gram-Schmidt系数与QR分解的上三角矩阵R中元素之间的关系出发,证明了上三角矩阵R的元素与Gram-Schmidt系数以及Lovász条件之间的等价的关系;从复数的指数形式出发,推导出2种适合LLL算法的复Givens旋转矩阵形式,并证明只有其中一种符合Lovász条件下复Givens旋转矩阵形式。仿真结果表明,采用基于QR分解的复数域LLL算法的MIMO系统相比采用基于Gram-Schmidt正交化LLL算法的MIMO系统具有更好的误比特率性能。